NATIONAL OCEANOGRAPHIC DATA CENTER

MANUAL SERIES

MANUAL FOR CODING AND KEYPUNCHING BIOLOGICAL DATA

NATIONAL OCEANOGRAPHIC DATA CENTER

MANUAL SERIES

MANUAL FOR CODING AND KEYPUNCHING BIOLOGICAL DATA
PHYTOPLANKTON DECK PRIMARY PRODUCTIVITY DECK PHYTOPLANKTON PIGMENT DECK ZOOPLANKTON DECK BENTHOS DECK

PUBLICATION M-4
(PROVISIONAL)
1965
Reprinted by
U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
1972

[^0]```
UDC 681.3.05:551.46.06:57(26)(021)
 681.3 Data processing
 .3.05 Data conversion--keypunching
551.46 Oceanography
 .46.06 Oceanographic data
5 7 ~ B i o l o g y
57(26) Marine Biology
(021) Specialized manuals
```

The objective of this manual is to provide the necessary instructions and conversion tables for reducing biological and related data collected at biological oceanographic stations to the standard format developed by the National Oceanographic Data Center (NODC).

It is intended for use by institutions, agencies, and other contributors interested in furnishing data to NODC for processing; copies of these forms are also available in volume to those who wish to maintain a system compatible with that of the national archive.

The card formats and codes described in this manual are based mainly on comments and suggestions from numerous scientific specialists of the oceanographic community. NODC is especially indebted to the ad hoc Biological Advisory Comm1ttee, chaired by Dr. B. Ketchum, for its valued guidance and review of all material. In general, the recommendations of the National Academy of Sciences/National Research Council Committee on Oceanography's Panel on Biological Methods were followed.

The NODC would particularly like to express its appreciation and gratitude to the following scientists who gave so freely of their time and advice toward establishing the data processing system described in this publication: Bostwick H. Ketchum, Elbert H. Ahlstrom, Thomas S. Austin, Beatrice Burch, Robert W. Holmes, Kenneth W. Kaye, Joseph E. King, Robert J. Menzies, M1lner B. Schaefer, Oscar E. Sette, John M. Sieburth, Donald F. Squires, and I. Eugene Wallen.



## Page

FOREWORD ..... 111
LIST OF TABLES ..... vi
LIST OF APPENDIXES ..... vi
INTRODUCIION ..... 1
GENERAI ..... 2
PHYTOPLANKTON DECK: Coding the Phytoplankton Data Form, Card Type 1 ..... 3
PHYTOPLANKTON DATA FORM ..... 11
PRIMARY PRODUCIIVITY DECK: Coding the Primary Productivity Data Form, Card type 1 ..... 13
PRIMARY PRODUCTIVITY DATA FORM ..... 25
PHYTOPLANKTON PIGMENT DECK: Coding the Phytoplankton Pigment Data Form, Card Type ..... 27
PHYTOPLANKTON PIGMENT DATA FORM ..... 41
ZOOPLANKTON DECK: Coding the Zooplankton Data Form, Card Type ..... 43
ZOOPLANKTON DATA FORM ..... 55
BENIHOS DECK: Coding the Benthos Data Form, Card Type 1.. ..... 57
BENIHOS DATA FORM. ..... 67
Table Page
1 Tenths Conversion - Conversion from minutes to tenths of an hour ..... 69
2 Time - Conversion from local time to Greenwich Mean Time (GMT) ..... 70
3 NODC Country Code. ..... 71
4 Institution Code ..... 73
5 Navigational Systems Code ..... 102
6 Depth - Conversion from fathoms to meters.. ..... 103
7 Depth - Conversion from feet to meters ..... 105
LIST OF APPENDIXES
Appendix ..... Page
I (a) Marsden Square Chart ..... 107
I (b) One-Degree Divisions of Marsden Squares ..... 109
II Spectrophotometer Code ..... 111
III Flowmeter Code ..... 112
IV Plankton Net and Sampler Code ..... 113

Biological data which are accumulated and cataloged by the NODC fall into two categories:

1. Data which are amenable to recording and processing by electronic data processing methods. Data can be effectively handled by these techniques only if the methods of measurement are sufficiently standardized. There appear to be only a few types of biological data gathered by different investigators by sufficiently comparable techniques to meet this specification.
2. Data which, because of the diversity of methods of measurement or for reasons of their descriptive nature, cannot be handled in standard formats. Data of this sort are filed as original data reports.

It is hoped that in time many data types presently being filed in category 2. above can become sufficiently standardized so as to be suitable for filing in category l. We recommend and urge that biologists agree on standard techniques and units of measurements wherever possible. This will be especially important in connection with the results of oceanwide surveys which, to be of greatest utility, should be made by methods which are comparable among different parts of the ocean and among different investigators.

The purpose of this manual is to provide instructions for processing the kinds of data described in category l. above. An effort was made to avoid the use of codes; however, due to the variety of techniques employed in the collection of data and measurement of biological variables, it was found to be a necessary "final resort" in many cases.

Brief descriptions of the biological data decks appear below.

1. The Phytoplankton Deck provides data on the nature, abundance, and distribution of phytoplankton.
2. The Primary Productivity Deck provides measurements of primary organic production and ancillary information necessary for the evaluation of the productivity of a given area.
3. The Phytoplankton Pigment Deck provides quantitative measurements of phytoplankton pigments, such as chlorophyll a, b, and $c$, and the astacin and non-astacin carotenoids.
4. The Zooplankton Deck provides data on the nature, abundance, and distribution of zooplankton populations.
5. The Benthos Deck provides data on the nature, abundance, and distribution of benthic populations.

The biological data decks described in this manual have provisional status and are always subject to improvement when the need arises. The NODC welcomes suggestions for their improvement from the scientific community.

The related physical, chemical, and geological environmental data may be contained in the appropriate NODC data archives and can be requested along with the biological data. The NODC 1s developing standard formats for non-nutrient ocean chemistry data, current data, inshore oceanographic data, marine sediment analysis data, and sediment chemical analysis data. When available, these will provide the marine biologist additional correlative data in an organized form in the shortest possible time.

Values are not to be suffixed by zeros when not given by the originator. However, zeros must be prefixed to fill a field.

In a few instances, decimal positions are not fixed within a field. Always fill the fields from right to left so that the last column within the field is filled, and enter a red dash over the digit which immediately follows the decimal point (tenths position). Leave columns blank when data are not available.

When the code "Other" is entered as an alternate to a specific code list of taxa, gear types, methods, etc., specify what is meant in the Remarks Section of the coding form and identify the column numbers.

Use the following rounding procedures whenever rounding is necessary:

$$
\begin{aligned}
\text { Example : } & >5 \text { - add one (1) to the preceding column. } \\
& <5 \text { - drop. } \\
& 5 \text { - round to the nearest even number. }
\end{aligned}
$$

Whenever time is entered on the coding forms, be sure to enter the time according to the 24 -hour system. For example, 4:30 P.M. should be entered as 1630 hours.

These columns provide a cumulative identification reference which is assigned by the NODC prior to processing. This number must be obtained from the NODC for cards punched outside the NODC.

Columns 6-8
CONSECUTIVE STATION NUMBER
Station numbers will be assigned and coded by the NODC unless the card is punched outside the NODC. Stations will be numbered consecutively and will start at 001 for each new cruise regardless of originator's numbering.

Columns 9-11
MARSDEN TEEN-DEGREE SQUARE
Enter the number of the Marsden ten-degree square. A Marsden Square Chart is provided in Appendix I to help locate the station's position according to the Marsden Square System.

Column 12
MARSDEN FIVE-DEGREE SQUARE
Enter the number of the Marsden five-degree (quadrant) square. See Appendix $I$.

Columns 13-14
MARSDEN ONE-DEGREE SQUARE
Enter the number of the Marsden one-degree square. This is obtained by uniting the unit numbers of the degrees latitude and degrees longitude, respectively. For example, the one-degree square for the position $35^{\circ} 20^{\prime} \mathrm{N}$., $148^{\circ} 10^{\prime} \mathrm{W}$. is 58 .

Enter whichever is applicable according to code. Column 15 must be filled in; estimate the environmental type if necessary.

Column 15
TYPE
0 - Inland waters
1 - Littoral zone
2 - Harbor
3 - Estuary
4 - Shelf
5 - Slope
6 - Canyon
7 - Rise or ridge
8 - Plain
9 - Deep, including trench and trough

Column 16
DEPTH RANGE
0 - $\quad 0-50 \mathrm{~m}$
1 - $51-100 \mathrm{~m}$
2 - 101-200 m
3 - 201-500 m
4 - $501-1000 \mathrm{~m}$
5 - 1001-2000 m
6 - 2001-3000 m
7 - 3001-4000 m
8 - 4001-6000 m
9->6000m

Column 17
PERIOD OF DAY OF SAMPLING
Enter whichever is applicable according to code.
$1-0000-0600$ hours
$2-0600-1200$ hours
$3-1200-1800$ hours
$4-1800-2400$ hours

When the above code is not applicable, enter as follows.
5 - A.M.
6 - $\mathrm{P}_{\star} \mathrm{M}_{\text {。 }}$
7 - Period covers both A.M. and P.M.

Columns 18-19
MONTH
Enter the month as determined by GMT using Arabic numerals ol through 12.

Columns 20-21
DAY
Enter day of month as determined by GMT. Use Arabic numerals 01 through 31.

Enter last two digits of year as determined by GMT.

Columns 24-26
IOCAL TIME OF SAMPLING
Enter the hour and tenths of an hour when the sample was collected. Table 1 converts minutes to tenths of an hour.

Columns 27-29
GREENWICH MEAN TIME (GMT) OF SAMPLING
Enter the hour and tenths of an hour when the sample was collected. Table 1 converts minutes to tenths of an hour. Table 2 converts local time to GMT.

Columns 30-34
LATITUDE
Enter the latitude in degrees and minutes. Enter $\underline{N}$ or $\underline{S}$ in Column 34.

Columns 35-40
LONGITUDE
Enter the longitude in degrees and minutes. Enter $\underline{E}$ or $\underline{W}$ in Column 40.

Columns 41-42
COUNITRY

Enter the NODC Country Code as shown in Table 3.

Columns 43-44
INSTITUTION

Enter the institution responsible for the data analysis as shown in the Institution Code in Table 4.

Columns 45-48
ORIGINATOR'S CRUISE NUMBER
Enter the number, alphabetic or alpha-numeric designator, or its closest equivalent assigned to the cruise by the originator. Leave blank if unknown.

Columns 42-53 ORIGINATOR'S STATION NUMBER

Enter the number, alphabetic or alpha-numeric designator, or its closest equivalent assigned to the station by the originator.

Enter the Navigational System Code as shown in Table 5.

Columns 56-60
DEPTH TO BOTTOM
Enter uncorrected sounding depth in meters. If depth is corrected, enter a red dash over the numeral in Column 56. When a red dash appears over Column 56, $\underline{x}$ overpunch Column 56. Table 6 converts fathoms to meters. Table 7 converts feet to meters.

Columns 61-63
UPPER DEPTH OF SAMPLING
Enter depth in meters. Table 6 converts fathoms to meters. Table 7 converts feet to meters. Enter a zero in Column 63 if the sample was collected at the surface.

Columns 64-66
LOWER DEPTH OF SAMPLING
Enter depth in meters. Repeat above entry when a horizontal haul was made. When the sample was collected at a single depth, the entry is made in Columns 61-63, and Columns 64-66 are left blank.

Column 67
TYPE OF SAMPLING DEVICE
Enter whichever is applicable according to code.

> 1 - Water sampler
> 2 - Net
> 9 - Other

Columns 68-69
CAPACITY OF WATER SAMPLER
Enter capacity of water sampler in liters. Use Column 69 for tenths. Should the capacity of the water sampler exceed 9.9 liters, enter the following code in Column 68: $\mathrm{A}=10, \mathrm{~B}=11, \mathrm{C}=12$, etc.

Columns 70-72
MOUTH DIAMETIER OF NET
Enter the diameter of the mouth opening in centimeters.

Columns 73-75
LENGITH OF THE NET
Enter the length of the net in centimeters.

The numeral 1 appears in Column 76.

Columns $77-78 \quad$ CARD NUMBERR
The number 01 appears in Columns $77-78$.

Columns 79-80 DECK NUMBER
The number 22 appears in Column 79-80.

# PHYTOPLANKTON DECK <br> <br> Coding the Phytoplankton Data Form 

 <br> <br> Coding the Phytoplankton Data Form}

CARD TYPE 2

## Columns 1-19

These columns are identical to those of Card Type 1 and need not be filled in. The information is reproduced from Card Type 1.

Columns 20-21
MESH APERTURE OF NEITIIVG
Enter the first two significant figures giving the mesh aperture to the nearest hundredth of a millimeter.

Columns 22-23
DURATION OF SAMPLING

Enter duration of sampling in minutes.

Column 24
SHIP SAMPLING SPEED
Enter the ship's speed at time of sampling in knots. Use zero if the ship is anchored or drifting. Use letters to designate ship's speed above 9 knots; $\underline{A}=10$ knots, $\underline{B}=11$ knots, etc. The letter $\underline{O}$ is to be omitted.

Columns 25-28
VOLUME OF WATER FILTERED
Enter the volume of water filtered in cubic meters.

## Column 29

Enter whichever is applicable according to code.
1 - Formalin
2-Alcohol
3 - Lugol
9 - Other

Enter whichever is applicable according to code.
1-Sample taxonomically unanalyzed
2 - Sample enumerated to family level
3 - Sample enumerated to generic level or below

Column 31
COUNTING TECHNIQUE
Enter whichever is applicable according to code.
1 - Inverted microscope
2 - Hemocytometer
3 - Sedgewick-Rafter cell
4 - Millipore ${ }^{(1)}$ filter
5 - Particle counter
9 - Other

Columns 32-33
CEIL VOLUME
Enter the total cell volume in cubic millimeters.

Columns 34-38
NUMBER OF CELLS
Enter number of cells in thousands per liter; use Column 38 for decimals.

Columns 39-41
TOTAL NUMBER OF SPECIES
Enter total number of species as given or after computation.

Columns 42-44
NUMBER OF SPECIES CONSTITUTITNG 90\% OF SAMPLE

Enter number of species as given or after computation.

Columns 45-51
Enter according to code:
1 - Present in aliquot
2 - Present in sample, but not found in aliquot
3 - Searched for, but not found in sample

| Column 45 | Chlorophyceae |
| :--- | :--- |
| Column 46 | Dinophyceae |
| Column 47 | Bacillariophyceae |
| Column 48 | Cyanophyceae |
| Column 49 | Silicoflagellates |
| Column 50 | Mu Flagellates |
| Column 51 | Other |

## Columns 52-71

Do not code. These columns are reserved for future use.

Columns 72-75
SMITHSONIAN OCEANOGRAPHIC SORTING CENTER (SOSC) ACCESSION NUMBER

Enter the SOSC accession number.

```
Column 76
CARD ITYPE
The numeral 2 appears in Column 76.
Columns 77-78 CARD NUMBER
The number 02 appears in Columns \(77-78\).
Columns 79-80 DECK NUMBER
```

The number 22 appears in Columns 79-80.



| CARD TYPE-2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2021 | 22.23 | 24 | 25 | 26 | 27128 | 29 | 30 | 31 | 323 | 34 | 35136 | 3738 | 39 | 014 | 42 | ${ }_{43} 4$ | 45 | 4 | 48 |  | 5 |  | 5 | 55 | [57 | 58 | 90 | 6 | 623 | 64 | 5 | 67 | 68 | 6970 | 17 | 7273 | 7 | 75 | 76 | 7178 | 7980 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 | ${ }^{-1} 2$ | $2{ }^{2}$ |

Coding the Primary Productivity Data Form

These columns provide a cumulative identification reference which is assigned by the NODC prior to processing. This number must be obtained from the NODC for cards punched outside the NODC.

Columns 6-8
CONSECUTIVE STATION NUMBER
Station numbers will be assigned and coded by the NODC unless the card is punched outside the NODC. Stations will be numbered consecutively and will start at 001 for each new cruise regardless of the originator's numbering.

## Columns 9-11

MARSDEN TEN-DEGREE SQUARE
Enter the number of the Marsden ten-degree square. A Marsden Square Chart is provided in Appendix I to help locate the station's position according to the Marsden square system.

Column 12
MARSDEN FIVE-DEGREE SQUARE
Enter the number of the Marsden five-degree (or quadrant) square. See Appendix I.

Columns 13-14
MARSDEN ONE-DEGREE SQUARE
Enter the number of the Marsden one-degree square. This is obtained by uniting the unit numbers of the degrees latitude and degrees longitude, respectively. For example, the one-degree square for the position $35^{\circ} 20^{\prime} \mathrm{N}$., $148^{\circ} 10^{\prime} \mathrm{W}$. is 58.

Enter whichever is applicable according to code. Column 15 must be filled in; estimate the environment type if necessary.

Column 15
TYPE
0 - Inland waters
1-Littoral zone
2 - Harbor
3 - Estuary
4 - Shelf
5 - Slope
6 - Canyon
7 - Rise or ridge
8 - Plain
9 - Deep, including trench or trough

## Column 16

DEPTH RANGE
$0-\quad 0-50 \mathrm{~m}$
1- $\quad 51-100 \mathrm{~m}$
2-101-200 m
3-201-500 m
4 - 501-1000 m
5-1001-2000 m
6 - 2001-3000 m
7 - 3001-4000 m
8-4001-6000 m
$9->6000 \mathrm{~m}$

Columns 17-18
MONTH
Enter the month as determined by GMT using Arabic numerals Ol through 12.

Columns 19-20 DAY

Enter day of month as determined by GMT using Arabic numerals 01 through 31.

Columns 21-22 YEAR

Enter last two digits of year as determined by GMT.

Columns 23-27
LATITUDE
Enter latitude in degrees and minutes. Enter $\underline{N}$ or $\underline{S}$ in Column 27.

Columns 28-33
IONGITUDE
Enter the longitude in degrees and minutes. Enter $\underline{E}$ or $\underline{W}$ in Column 33.

Columns 34-35
COUNITRY
Enter the NODC Country Code as shown in Table 3.

Enter the Institution Code as shown in Table 4.

Columns 38-41
ORIGINATOR'S CRUISE NUMBER
Enter the number, alphabetic or alpha-numeric designator, or its closest equivalent assigned to the cruise by the originator. Leave blank if unknown.

Columns 42-46
ORIGINATOR'S STATION NUMBER
Enter the number, alphabetic or alpha-numeric designator, or its closest equivalent assigned to the station by the originator.

Column 47
METHOD OF MEASURFMENTI
The method by which the rate of photosynthesis is given is the Carbon-14 uptake method first described by Steemann Nielsen (1952 J. Cons. Internation Explor. Mer. 43:117-140) and modifications thereof.

The letter C (for Carbon-14 uptake) appears in Column 47.

Columns 48-50
TOTAL CARBON DIOXIDE CONCENTRATION OF WATER SAMPLE

Enter total carbon dioxide concentration in milliliters per liter. Column 50 is for tenths.

Columns 51-53
ACTIVITY OF CARBON-14 AMPULE
Enter the activity of the Carbon-14 ampule in microcuries. Use Column 53 for tenths.

Columns 54-57
COILECTION TTME OF WATER SAMPLE
Enter the local time (24-hour system) the water sample used for the productivity measurements was collected.

Columns 58-61
INITIAL INCUBATION TIME
Enter the local time (24-hour system) incubation was initiated.

Enter duration of incubation of water samples in hours and tenths of hours. Enter hours in Columns 62-63; enter tenths of an hour in Column 64. Table 1 converts minutes to tenths of hours.

Column 65
TYPE OF ILUUMINATION DURING INCUBATION
Enter whichever is applicable according to code:
Ambient natural light
1-Without light filters
2 - With spectrally neutral filters
3 - With spectrally selective filters
Fluorescent light
4 - Without light filters
5 - With spectrally neutral filters
6 - With spectrally selective filters
Incandescent light
7 - Without light filters
8 - With spectrally neutral filters
9 - With spectrally selective filters

Column 66
FIUTER TYPE
Enter according to code:
Spectrally neutral filters
1 - Nylon netting
2 - Monel screening
3 - Nickel screening
4 - Plexiglass
5 - Other
Spectrally selective filters
6 - Wratten 45 filter
7 - Wratten 45A filter
8 - Wratten 61 filter
9 - Other

DOMINANT WAVE LENGTH OF FIUTER OR
PERCENT TRANSMIITANCE OF LIGHT BY SPECTRALLY NEUIRAL FILTER

Enter the dominant wave length of the spectrally selective filter in millimicrons in Columns 67-69; or enter the percent transmittance of light by the spectrally neutral filter in Columns 67-68, and enter the letter $P$ in Column 69.

Columns 70-74
MEAN DATLY LIGHT INTENSITY
Enter the mean dafly light intensity in gram calories per square centimeter per minute (langleys/min) in Columns 70-73. Enter tenths, hundredths, and thousandths in Columns T1-73.

Fnter the time period of measurement in Column 74 according to code:
1- Daylight period between sunrise and sunset
2-24-hour period

Column 75
FLUX COLTECTOR

Enter according to code.
1 - Flat plate (total irradiance falling upon a horizontal plane)
2 - Sphere
3 - Estimate obtained through use of a deck photometer

Column 76
CARD TYPE
The numeral 1 appears in Column 76.

Columns 77-78
CARD NUMBER
The number 01 appears in Columns $77-78$.

Columns 79-80
DECK NUMBER
The number 23 appears in Columns 79-80.

## PRIMARY PRODUCTIVITY DECK

## Coding the Primary Productivity Data Form

CARD TYPE 2

## Columns 1-18

These columns are identical to those of Card Type 1 and need not be filled in. The information is reproduced from Card Type 1.

Columns 19-22
TOTAL DAILY RADIATION
Enter the total daily radiation in whole langleys in Columns 19-21. Enter the time period of measurement in Column 22 according to code.
l - Daylight period between sunrise and sunset
2 - 24-hour period

Columns 23-27
MEAN LIGHT INTENSITY DURING INCUBATION
Enter the mean light intensity during incubation of the water samples in foot candles.

COLUMNS 28-41 ARE FOR RECORDING DATA ON LIGHT TRANSMISSION.

Columns 28-30
WAVE LENGTH MEASURED
Enter the wave length in millimicrons.

Columns 31-33
PEAK SPECTRAL SENSITIVITY OF THE IRRADIANCE METER AT HALF BAND WIDTH

Enter the peak spectral sensitivity at half band width in millimicrons.

## Columns 34-37

HALF BAND WIDIH
Enter the half band width of the irradiance meter in millimicrons. Enter the lowest value of the range in Columns $34-35$ and the highest value of the range in Columns 36-37. Record only the tens and units digits. The hundreds digit will be understood. For example, the half band width for a peak spectral sensitivity of 480 mu may range from 450 to 510 mu . Record 50 in Columns 34-35, and 10 in Columns 36-37.

Enter the type of irradiance measured according to code.
1 - Upweiling light
2 - Downwelling light

Columns 39-41
ATTENUATION COEFFICIENT
Enter the attenuation coefficient.

COLUMNS 42-53 ARE FOR RECORDING PHOTOMETRIC DEPTHS IN METERS.

Column 42
100\% TRANSMISSION
Enter the depth corresponding to 100 percent transmission. Enter a zero for the surface.

Columns 43-44
75\% TRANSMISSION
Enter the depth corresponding to 75 percent transmission. If less than 10 meters, prefix the depth with a zero in Column 43.

Columns 45-46
50\% TRANSMISSION
Enter the depth corresponding to 50 percent transmission. If less than 10 meters, prefix the depth with a zero in Column 45.

Columns 47-48
25\% TRANSMISSION
Enter the depth corresponding to 25 percent transmission.

Columns 49-50
10\% TRANSMISSION
Enter the depth corresponding to 10 percent transmission.

Columns 51-53
1\% TRANSMISSION
Enter the depth corresponding to one (I) percent transmission. If less than 100 meters, prefix the depth with a zero in Column 51.

Enter, in order of increasing depth, the depths from which the water samples were collected. Depths are entered in meters. Table 6 converts fathoms to meters. Table 7 converts feet to meters. If necessary, prefix the depth with zeros in order to fill the field.

| Columns 54-55 | FIRST DEPTH |
| :--- | :--- |
| (Enter a zero in Column 55 if the  <br> sample was collected at the surface.)  <br> Columns 56-57 SECOND DEPTH <br> Columns 58-59 THIRD DEPTH <br> Columns 60-61 FOURTH DEPTH <br> Columns 62-64 FIFTH DEPTH <br> Columns 65-67 SIXTH DEPTH$.$\begin{tabular}{l}
\end{tabular} |  |

## Columns 68-75

Do not code. These columns are reserved for future use.

## Column 76

CARD TYPE
The numeral 2 appears in Column 76 .

Columns 77-78
CARD IUMBER
The number 02 appears in Columns 77-78.

Columns 79-80
DECK NUNBER
The number 23 appears in Columns 79-80.

## PRIMARY PRODUCTIVITY

Coding the Primary Productivity Data Form

## CARD TYPE 3

There will be as many of Card Type 3 produced as there are depths at which primary productivity has been measured. The Card Number (Columns 77-78) increases by one for each depth, beginning with 03.

Columns 1-18
These columns are identical to those of Card Type 1 and need not be filled in. The information is reproduced from Card Type 1.

Columns 19-21
PRODUCTIVITY DEPTH
Enter the depth(s) (in order of increasing depth) for which productivity has been measured. Enter a zero in Column 21 when the sample was collected at the surface and prefix with zeros in Columns 19-20.

COLUMNS 22-38 ARE FOR RECORDING DATA ON RATE OF CARBON-14 ASSIMILATION.

Columns 22-26
MILUIGRAMS OF CARBON PER CUBIC METER PER HOUR

Enter rate of C-14 assimilation in $\mathrm{mg} \mathrm{c} / \mathrm{m}^{3} / \mathrm{hr}$. Use Columns 24-26 for tenths, hundredths, and thousandths, respectively.

Columns 27-32
MILUIGRAMS OF CARBON PER CUBIC METER PER DAY
Enter rate of C-14 assimilation in $\mathrm{mg} \mathrm{C} / \mathrm{m}^{3} /$ day. Use Columns $30-32$ for tenths, hundredths, and thousandths, respectively.

Columns 33-38
GRAMS OF CARBON PER
SQUARE METER PER DAY (INTEGRATED)
Enter rate of C-14 assimilation in $\mathrm{g} \mathrm{c} / \mathrm{m}^{2} /$ day. Use Columns 36-38 for tenths, hundredths, and thousandths, respectively.

Enter according to code.
1 - Photosynthesis was measured in individual water samples incubated at the depths from which they came.

2 - Photosynthesis was measured in subsamples of a surface water sample incubated at the different depths.

3 - Equal volumes of water from several depths were mixed to give a composite sample. Photosynthesis was measured on composite sample held in a deck incubator under natural light.

4 - Same as Code 3, but sample held in a deck incubator under constant light.

5 - Photosynthesis was measured in individual samples from the surface and/or various depths. Each sample was held in a deck incubator under natural light.

6 - Photosynthesis was measured in individual samples from the surface and/or various depths. Each sample was held in a deck incubator under constant light.

7 - Photosynthesis was measured in individual samples from the surface and/or various depths. Each sample was exposed to natural light in a deck incubator under a spectrally neutral filter corresponding to the light level from which the sample was taken.

9 - Other

Columns 40-43
MEAN WATER TEMPERATURE DURING INCUBATION
Enter the mean temperature of the water during incubation in degrees Celsius. Use Columns 42 and 43 for tenths and hundredths, respectively.

Enter the total count for the light bottle in Columns 44-49. Enter the duration of counting in minutes for the Iight bottle in Columns 50-51.

Columns 52-59
DARK BOTHIE ACTIVITY
Enter the total count for the dark bottle in Columns 52-57. Enter the duration of counting in minutes for the dark bottle in Columns 58-59.

Enter the background activity in counts per minute.

Columns 64-75
Do not code. These columns are reserved for future use.

Column 76
CARD TYPE
The numeral 3 appears in Column 76 .

Columns 77-78
CARD NUMBER
The number 03 appears in Columns 77-78. The numbers $04-10$ also appear on the coding form, providing card numbers corresponding to data associated with samples from the surface and seven depths.

Should data for samples taken from elght or more different depths be recorded, enter additional card numbers as needed, beginning with 11.

Columns 79-80
DECK NUMBER

The number 23 appears in Columns 79-80.
national oceanographic data center
PRIMARY PRODUCTIVITY DATA FORM









These columns provide a cumulative identification reference which is assigned by the NODC prior to processing. This number must be obtained from the NODC for cards punched outside the NODC.

Columns 6-8
CONSECUTIVE STATION NUMBER
Station numbers will be assigned and coded by the NODC unless the card is punched outside the NODC. Stations will be numbered consecutively and will start at 001 for each new cruise regardless of originator's numbering.

Columns 9-11
MARSDEN TEN-DEGREE SQUARE
Enter the number of the Marsden ten-degree square. A Marsden Square Chart is provided in Appendix I to help locate the station's position according to the Marsden Square System.

Column 12
MARSDEN FIVE-DEGREE SQUARE
Enter the number of the Marsden five-degree (quadrant) square. See Appendix I.

Columns 13-14
MARSDEN ONE-DEGREE SQUARE
Enter the number of the Marsden one-degree square. This is obtained by uniting the unit numbers of the degrees latitude and degrees longitude, respectively. For example, the one-degree square for the position $35^{\circ} 20^{\prime} \mathrm{N}$., $148^{\circ} 10^{\prime} \mathrm{W}$. is 58.

Enter whichever is applicable according to code. Column 15 must be filled in; estimate the environmental type if necessary.

Column 15
TYPE
0 - Inland waters
1 - Littoral zone
2 - Harbor
3 - Estuary
4 - Shelf
5-Slope
6 - Canyon
7 - Rise or ridge
8 - Plain
9 - Deep, including trench and trough

Column 17

## Column 16

DEPTH RANGE
0 - $0-50 \mathrm{~m}$
1 - $51-100 \mathrm{~m}$
2-101-200 m
3-201-500 m
4 - 501-1000 m
5 - 1001-2000 m
6 - 2001-3000 m
7 - 3001-4000 m
8 - 4001-6000 m
9->6000m

Enter whichever is applicable according to code.

$$
\begin{aligned}
& 1 \text { - 0000-0600 hours } \\
& 2 \text { - 0600-1200 hours } \\
& 3 \text { - 1200-1800 hours } \\
& 4 \text { - 1800-2400 hours }
\end{aligned}
$$

When the above code is not applicable, enter as follows.

$$
\begin{aligned}
& 5 \text { - A.M. } \\
& 6 \text { - P.M. } \\
& 7 \text { - Period covers both A.M. and P.M. }
\end{aligned}
$$

## Columns 18-19

MONTH
Enter the month as determined by GMT using Arabic numerals Ol through 12.

Columns 20-21
DAY
Enter day of month as determined by GVT. Use Arabic numerals 01 through 31.

Enter last two digits of year as determined by GMT.

Columns 24-26
LOCAL TIME OF SAMPLING
Enter the hour and tenths of an hour when the water sample was collected. Table 1 converts minutes to tenths of an hour.

Columns 27-29
GREENWICH MEAN TIME (GMT) OF SAMPLING
Enter the hour and tenths of an hour when the water sample was collected. Table 1 converts minutes to tenths of an hour. Table 2 converts local time to GMT.

Columns 30-34
LATITUDE
Enter the latitude in degrees and minutes. Enter $\mathbb{N}$ or $\underline{S}$ in Column 34.
Columns 35-40
LONGITUDE
Enter the longitude in degrees and minutes. Enter $\underline{E}$ or $\underline{W}$ in Column 40.

## Columns 41-42

COUNITRY
Enter the NODC Country Code as shown in Table 3.

Columns 43-44
INSTITUTIION
Enter the Institution Code as shown in Table 4.

## Columns 45-48

ORIGINATOR'S CRUISE NUMBER
Enter the number, alphabetic or alpha-numeric designator, or its closest equivalent assigned to the cruise by the originator. Leave blank if unknown.

Columns 49-53
ORIGINATOR'S STATION NUMBER
Enter the number, alphabetic or alpha-numeric designator, or its closest equivalent assigned to the station by the originator.

Enter the volume of water filtered in milliliters. When the volume exceeds 9,999 ml, apply the following code: $\underline{A}^{A}=10,000, \underline{B}=11,000$, etc. Enter the appropriate letter in Column 54 followed by the hundredths, tenths, and units in Columns 55, 56, and 57, respectively. For example: $12,576 \mathrm{ml}$ would be entered as C576.

Column 58
FILTER TYPE
Enter according to code.
Cellulose-type membrane filters
l - Millipore ${ }^{\circledR}$ Type PH
2-Millipore (1) Type HA
3-Millipore ${ }^{(1)}$ Type DA
4-Millipore ${ }^{\circledR}$ Type AA
5 - Other
Fine-glass fiber filters
6 - Whatman GF/C
7 - Gelman glass filter
9 - Other

Columns 59-60
PORE SIZE OF FIITER
Enter pore size in microns.

Column 61
SOLVENT TYPE
Enter whichever is applicable according to code.

> 1 - Acetone
> 2 - Methanol
> 3 - Diethyl ether
> 9 - Other

Columns 62-63
SOLVENT CONCENTRATION
Enter solvent concentration in percent; prefix zeros to fill the field, if necessary.

Enter whichever is applicable according to code:

$$
\begin{aligned}
& \text { l-Air } \\
& 2 \text { - Solvent } \\
& 3 \text { - Solvent plus filter }
\end{aligned}
$$

## Columns 65-66

Enter pressure reduction in cm Hg .

## Column 67

Enter whichever is applicable according to code.
l - Richards with Thompson (1952 J. Mar. Res. Il(2):156-172)
2 - Strickland and Parsons (1960 Bull. Res. Bd. Canada, 125:107-112) (Modifications of [1])
3 - SCOR Procedure (Working Group 17, 1964)
9 - Other

Column 68
SPECTROPHOTOMETER, MAKE AND MODEL
Enter according to code:
Open list, see Appendix II

Columns 69-72
DATE OF LAST WAVE LENGTH CALIBRATION
Enter the month (01-12) in Columns 69-70; enter the last two digits of the year in Columns 71-72. (Example: July $1964=0764$ )

Column 73
CALIBRATION REFERENCE
Enter whichever is applicable according to code:
I - Didymium glass
2 - Interference filter
9 - Other

Columns 74-75
Do not code. These columns are reserved for future use.

The numeral 1 appears in Column 76.

## Columns 77-78

The number 01 appears in Columns $77-78$.

## Columns 79-80

## DECK NUMBER

The number 24 appears in Columns 79-80.

## PHYTOPLANKTON PIGMENT DECK

Coding the Phytoplankton Pigment Data Form

CARD TYPE 2

There will be as many of Card Type 2 produced as there are depths from which samples have been collected and data reported. The card number (Columns 77-78) increases by one for each depth, beginning with 02.

## Columns 1-19

These columns are identical to those of Card Type 1 and need not be filled in. The information is reproduced from Card Type l.

Columns 20-22
DEPT'H OF WATER SAMPLE
Enter the depth from which the water sample was collected in meters. If the sample was collected at the surface, enter a zero in Column 22, and prefix with zeros in Columns 20-21.

Columns 23-64
OPTICAL DENSITIES OF PIGMENT EXXTRACTS DETERMINED AT VARIOUS WAVE LENGTHS
(INCLUDING HALF BAND WIDTHS)
The optical densities recorded must be corrected for the blank.

Columns 23-25
Enter the optical density (O.D.) measured at 480 mqu.

Columns 26-29
Enter the half band width (in mu) at $480 \mathrm{~m} \mu$. Enter the lowest value of the range in Columns 26-27, and highest value in Columns 28-29. Record only the tens and units digits. The hundreds digit will be understood. For example, the half band widths for a peak spectral sensitivity of 480 m may range from 450 to 510 mu . Record 50 in Columns $26-27$ and 10 in Columns 28-29. Follow these instructions for all half band widths recorded.

Columns 30-32
Enter the O.D. measured at 510 mq .

Enter the half band width (in mus) at $510 \mathrm{~m} \mu$. Enter the lowest value of the range in Columns 33-34 and highest value in Columns 35-36.

Columns 37-39
Enter the O.D. measured at 630 mu .

Columns 40-43
Enter the half band width (in mus) at 630 mu. Enter the lowest value of the range in Columns $40-41$ and highest value in Columns $42-43$.

Columns 44-46
Enter the O.D. measured at 645 mu .

Columns 47-50
Enter the half band width (in mu) at 645 mu. Enter the lowest value of the range in Columns 47-48 and highest value in Columns 49-50.

Columns 51-53
Enter the O.D. measured at 663 mu . When the O.D. was measured at 665 mu, place a red dash over Column 51. When a red dash appears over Column 51, x overpunch Column 51.

## Columns 54-57

Enter the half band width (in mus) at 663 (or 665) mu. Enter the lowest value of the range in Columns 54-55 and highest value in Columns 56-57.

Columns 58-60
Enter the O.D. measured at 750 mu .

Columns 61-64
Enter the half band width (in mu) at 750 mus Enter the lowest value of the range in Columns 61-62 and highest value in Columns 63-64.

Enter the length of the light path in centimeters.

Columns 67-68
FINAL VOLUME OF SOLVENT
Enter the final volume of the solvent in milliliters.

Columns 69-75
Do not code. These columns are reserved for future use.

Column 76
CARD TYPE
The numeral 2 appears in Column 76.

Columns $77-78$
data are recorded. Begin coding data are recorded. Begin coding with the number 02 in Columns 77-78.

Columns 79-80
The number 24 appears in Columns 79-80.

## PHYTOPLANKTON PIGMENT DECK

Coding the Phytoplankton Pigment Data Form

CARD TYPE 3

There will be as many of Card Type 3 produced as there are depths from which samples have been collected and data reported. The card number (Columns 77-78) increases by one for each depth.

Columns 1-19
These columns are identical to those of Card Iype 1 and need not be filled in. The information is reproduced from Card Type 1.

Columns 20-22
SAMPLE DEPTH
Enter the depth from which the sample was collected in meters. If the sample was taken from the surface, enter a zero in Column 22 and prefix with zeros in Columns 20-21.

Columns 23-26
MIIUIGRAMS OF CHLOROPHYL a
PER CUBIC METER
Enter the concentration of Chlorophyll a in mg/m3. Columns 25-26 are used for decimals. Place a red dash over Column 23 whenever a negative value 1s reported. When a red dash appears over Column 23, x overpunch Column 23.

Columns 27-30
MIILIGRAMS OF CHLOROPHYLU a PER SQUARE METER

Enter the concentration of Chlorophyll a $1 \mathrm{nmg} / \mathrm{m}^{2}$. Columns 29-30 are used for decimals. Enter the concentration Opposite the first depth only.

Columns 31-34
SPECIFIC ABSORPTION COEFFICIENT
OF CHLOROPHYL
Enter the specific absorption coefficient for Chlorophyll a. Columns 33-34 are used for decimals.

Columns 35-38
MIILIGRAMS OF CHLOROPHYLU b PER CUBIC MEIER

Enter the concentration of Chlorophyll $\underline{b}$ in $\mathrm{mg} / \mathrm{m}^{3}$. Columns 37-38 are used for decimals. Place a red dash over Column 35 whenever a negative value 1s reported. When a red dash appears over Column 35, x overpunch Column 35.

Enter the concentration of Chlorophyll bin $\mathrm{mg} / \mathrm{m}^{2}$. Columns $41-42$ are used for decimals. Enter the concentration opposite the first depth only.

Columns 43-46
SPECIFIC ABSORPTION COEFFICIENT OF CHLOROPHYL ㅁ

Enter the specific absorption coefficient for Chlorophyll b. Columns 45-46 are used for decimals.

Columns 47-50

## MIILIGRAMS OF CHLOROPHYL © PER CUBIC METER

Enter the concentration of Chlorophyll c $1 \mathrm{nmg} / \mathrm{m}^{3}$. Columns 49-50 are used for decimals. If the concentration of Chlorophyll $c$ is reported in MSPU/m3, follow the instructions given for Column 55 and enter the appropriate code in Column 55. Place a red dash over Column 47 whenever a negative value is reported. Whenever a red dash appears over Column 47, x overpunch Column 47.

Columns 51-54

## MIILIGRAMS OF CHLOROPFYLU © PER SQUARE METER

Enter the concentration of Chlorophyll $\subset$ in $\mathrm{mg} / \mathrm{m}^{2}$. Columns 53-54 are used for decimals. Enter the concentration opposite the first depth only. If the concentration of Chlorophyll $c$ is reported in MSPU $/ \mathrm{m}^{2}$, follow the instructions given for Column 55 and enter the appropriate code in Column 55.

Column 55
RICHARDS SPECIFIED PIGMENT UNITS (SPU)
These units (Richards with Thompson, 1952, J. Mar. Res. Il(2):156-172) correspond to about one gram of the pigment concerned. The milliunit (MSPU) approximates a milligram of the pigment.

When the concentration of Chlorophyll $c$ is given as MSPU per cubic meter, enter the numeral 1 in Column 55.

When the concentration of Chlorophyll $\subset$ is given as MSPU per square meter, enter the numeral 2 in Column 55.

When the concentration of Chlorophyll c is given both as MSPU per cubic meter and MSPU per square meter, enter the numeral $\underline{3}$ in Column 55.

When the concentration of Chlorophyll $c$ is given in milligrams of pigment, leave Column 55 blank.

Enter the specific absorption coefficient for Chlorophyll c. Columns 58-59 are used for decimals.

Columns 60-63

## ASTACIN CAROTENOIDS

Enter the concentration of astacin carotenoids in milligrams per cubic meter or in MSPU per cubic meter. Columns 62-63 are used for decimals. When reported in MSPU, follow the instructions given for Column 68 and enter the appropriate code in Column 68. When not reported in MSPU, leave Column 68 blank.

When data are recorded in either milligrams per square meter or in MSPU per square meter, place a red dash over Column 60. When a red dash appears over Column 60, x overpunch Column 60. Place a red dash over Column 63 when negative values are reported. When a red dash appears over Column 63, x overpunch Column 63.

## Columns 64-67

## NON-ASTACIN CAROTENOIDS

Enter the concentration of non-astacin carotenoids in milligrams per cubic meter or in MSPU per cubic meter. Columns 66-67 are used for decimals. When reported in MSPU, follow the instructions given for Column 68 and enter the appropriate code in Column 68. When not reported in MSPU, leave Column 68 blank.

When data are reported in either milligrams per square meter or in MSPU per square meter, place a red dash over Column 64. When a red dash appears over Column 64, x overpunch Column 64. Place a red dash over Column 67 when negative values are reported. When a red dash appears over Column 67, x overpunch Column 67 .

$$
\text { Column } 68
$$

These units correspond to about one gram of the pigment concerned. The milliunit (MSPU) approximates a milligram of the pigment.

When the concentration of only the astacin carotenoids is reported in MSPU, enter the numeral 1 in Column 68.

When the concentration of only the non-astacin carotenoids is reported in MSPU, enter the numeral 2 in Column 68.

When the concentration of both astacin and non-astacin carotenoids is reported in MSPU, enter the numeral $\underline{3}$ in Column 68.

Enter the specific absorption coefficient for the astacin carotenoids. Column 71 is used for tenths.

Columns 72-74
SPECIFIC ABSORPTION COEFFICIENT FOR THE NON-ASTACIN CAROTENOIDS

Enter the specific absorption coefficient for the non-astacin carotenoids. Column 74 is used for tenths.

Column 75
Do not code. This column is reserved for future use.

## Column 76

CARD TYPE
The numeral 3 appears in Column 76 .

Columns 77-78
CARD NUMBER
Enter the card number in Columns $77-78$. The card number increases by one for each sample depth, in order of increasing depth. The first card number of Card Type 3 follows the last card number of Card Type 2. For example, if the last card number of Card Type 2 was 07 , enter the number 08 in Columns 77-78 of Card Type 3 and follow with 09, 10, 11, etc.

Columns 79-80
DECK NUMBER
The number 24 appears in Columns 79-80.
national oceanographic data center
PHYTOPLANKTON PIGMENT DATA FORM







# ZOOPLANKTON DECK <br> Coding the Zooplankton Data Form 

CARD TYPE 1

## Columns l-5

IDENTIIT NUMBER
These columns provide a cumulative identification reference which is assigned by the $N O D C$ prior to processing. This number must be obtained from the NODC for cards punched outside the NODC.

Columns 6-8
CONSECUTIVE STATION NUMBER
Station numbers will be assigned and coded by the NODC unless the card is punched outside the NODC. Stations will be numbered consecutively and will start at 001 for each new cruise regardless of originator's numbering.

Columns 9-11
MARSDEN TEN-DEGREE SQUARE
Enter the number of the Marsden ten-degree square. A Marsden Square Chart is provided in Appendix I to help locate the station's position according to the Marsden Square System.

Column 12
MARSDEN FIVE-DEGREE SQUARE
Enter the number of the Marsden f1ve-degree (quadrant) square. See Appendix I.

## Columns 13-14

## MARSDEN ONE-DEGREE SQUARE

Enter the number of the Marsden one-degree square. This is obtained by uniting the unit numbers of the degrees latitude and degrees longitude, respectively. For example, the one-degree square for the position $35^{\circ} 20$ ' N ., $148^{\circ} 10^{\prime} \mathrm{W}$. is 58.

Enter whichever is applicable according to code. Column 15 must be filled in; estimate the environment type if necessary.

Column 15
TYPE
0 - Inland waters
1- Littoral zone
2 - Harbor
3 - Estuary
4 - Shelf
5 - Slope
6 - Canyon
7 - Rise or ridge
8 - Plain
9 - Deep, including trench and trough

Column 17

Column 16
DEPTH RANGE
0 - $\quad 0-50 \mathrm{~m}$
1- $51-100 \mathrm{~m}$
2 - 101-200 m
3 - 201-500 m
4 - $501-1000 \mathrm{~m}$
5 - 1001-2000 m
6 - 2001-3000 m
7 - 3001-4000 m
8 - 4001-6000 m
9->6000m

Enter whichever is applicable according to code.

$$
\begin{aligned}
& 1-0000-0600 \text { hours } \\
& 2-0600-1200 \text { hours } \\
& 3 \text { - 1200-1800 hours } \\
& 4 \text { - 1800-2400 hours }
\end{aligned}
$$

When the above code is not applicable, enter as follows.
5 - A.M.
6 - P.M.
7 - Period covers both A.M. and P.M.

Columns 18-19
MONTH
Enter the month as determined by GMT using Arabic numerals 01 through 12.

Columns 20-21
DAY
Enter day of month as determined by GMT. Use Arabic numerals 01 through 31.

Enter last two digits of year as determined by GMT.

Columns 24-26
LOCAL TIME OF SAMPLING
Enter the hour and tenths of an hour when sampling was initiated. Table 1 converts minutes to tenths of an hour.

Columns 27-29
GREENWICH MEAN TIME (GMT) OF SAMPLING
Enter the hour and tenths of an hour when sampling was inftiated. Table 1 converts minutes to tenths of an hour. Table 2 converts local time to GMT.

Columns 30-34
LATITUDE
Enter the latitude in degrees and minutes. Enter $\mathbb{N}$ or $\underline{S}$ in Column 34 .

Columns 35-40
LONGITUDE
Enter the longitude in degrees and minutes. Enter $E$ or $W$ in Column 40.

Columns 41-42
COUNTRY
Enter the NODC Country Code as shown in Table 3.

Columns 43-44
INSTITUTION
Enter the institution responsible for the data analysis as shown in the Institution Code in Table 4.

Columns 45-48 ORIGINATOR'S CRUISE NUMBER

Enter the number, alphabetic or alpha-numeric designator, or its closest equivalent assigned to the cruise by the originator. Leave blank if unknown.

Columns 49-53
ORIGINATOR'S STATION NUMBER
Enter the number, alphabetic or alpha-numeric designator, or its closest equivalent assigned to the station by the originator.

Enter the Navigational System Code as shown in Table 5.

Columns 56-60
DEPTH TO BOTTOM
Enter uncorrected sounding depth in meters. If depth is corrected, enter a red dash over the numeral in Column 56. When a red dash appears over Column 56, x overpunch Column 56. Table 6 converts fathoms to meters. Table 7 converts feet to meters.

Columns 61-64
UPPER DEPTH OF SAMPLING
Enter depth in meters. Table 6 converts from fathoms to meters. Table 7 converts from feet to meters. Enter a zero in Column 64 if the sample was collected at the surface and prefix zeros in Columns 6l-63. When point sampling (by water sampler or pump versus integrated sampling by net between two depths) occurred, enter the depth of sampling in Columns 61-64 and leave Columns 65-68 blank.

Columns 65-68
LOWER DEPTH OF SAMPLING
Enter depth in meters. Repeat above entry when a horizontal haul was made.

## Columns 69-70

Enter whichever is applicable according to code.

Column 69 I - Pump
2 - Net, cylindrical
3 - Net, cylindrical conical
4 - Net, double conical
5 - High speed samplers
6 - Continuous recorders, Hardy, etc.
7 - Multiple nets

$$
\begin{aligned}
\text { Column } 70 \quad \begin{aligned}
1- & \text { Net, without flow meter, remaining } \\
& \text { open at all times } \\
2- & \text { Net, without flow meter, closing after } \\
& \text { completion of sampling }
\end{aligned} \\
3-\begin{array}{l}
\text { Net, with flow meter located at or near } \\
\\
\text { mouth, remaining open at all times }
\end{array} \\
4-\begin{array}{l}
\text { Net, with flow meter located at or near } \\
\\
\text { the tail end of the net, remaining open } \\
\text { at all times }
\end{array} \\
5-\begin{array}{l}
\text { Net, with flow meter located at or near } \\
\\
\text { the mouth, closing after completion } \\
\text { of sampling }
\end{array} \\
6-\begin{array}{l}
\text { Net, with flow meter located at or near } \\
\text { the tail end of the net, closing after } \\
\text { completion of sampling }
\end{array}
\end{aligned}
$$

Column 71
FLOW METER TYPE
Enter the type of flow meter as shown in Appendix III.

Column 72
TYPE OF HAUL
Enter whichever is applicable according to code:
1 - Vertical
2 - Horizontal
3 - Oblique

Columns 73-75
MOUTH DIAMETER OF PLANKTON SAMPLER
Enter the diameter of the mouth opening in centimeters.

Column 76
The numeral 1 appears in Column 76.
Columns 77-78
CARD NUMBER
The number Ol appears in Column $77-78$.
Columns 79-80
DECK NUMBER
The number 25 appears in Columns 79-80.

## Coding the Zooplankton Data Form

CARD TYPE 2

## Columns 1-19

These columns are identical to those of Card Type 1 and need not be filled in. The information is reproduced from Card Type 1.

Columns 20-21
FIITERING EFFICIENCY
Enter the ratio of the area of the net at its opening to the area of the effective filtering surface to the nearest hundredth.

Columns 22-23 MESH APERTURE OF NETTITNG
Enter the first two significant figures giving the mesh aperture to hundredths of a millimeter. When the aperture is one millimeter or greater, enter the tenths and hundredths numerals in Columns 22-23, respectively, and a red dash over the numeral in Column 22.

Column 24
NEITING MATERIAL
Enter whichever is applicable according to code:

> 1 - Nylon
> 2 - Silk
> 3 - Cotton
> 4 - Metal
> 9 - Other

Columns 25-26
TYPE AND MAKE OF PLANKTON NET
Enter according to code given in Appendix IV.

Columns 27-29
Enter the duration of sampling in minutes. When the duration of sampling exceeds 16 hours ( 960 minutes), enter the number of hours in Columns 27 and 28; enter the tenths of hours in Column 29. When hours
and tenths of hours are entered, place a red dash over Column 27. When a red dash is entered over Column 27, $x$ overpunch Column 27.

Column 30
SHIP SAMPLING SPEED
Fnter the ship's speed at time of sampling in knots. Use zero if the ship is anchored or drifting. Use letters to designate ship's speed greater than 9 knots: A for 10 knots, $\underline{B}$ for $l l$ knots, etc. The letter $\underline{O}$ is to be omitted.

Columns 31-34
VOLUME OF WATER FIITERED
Enter volume of water filtered in cubic meters. When the volume exceeds $9999 \mathrm{~m}^{3}$, apply the following code: A for 10,000 , B for 11,000 , C for 12,000, etc. Enter the appropriate letter in Column 31 followed by the hundreds, tenths, and units in Columns 32, 33, and 34, respectively. Ex.: $12576 \mathrm{~m}^{3}$ would be entered as C 576.

Column3 35-37
WET WEIGHT OF SAMPLE
Enter the wet weight of sample in grams per cubic meter.

Columns 38-39
DRY WEIGHT OF SAMPLE
Enter dry weight of sample in milligrams per cubic meter.

Columns 40-41
LOSS ON IGNITION
Enter loss on ignition (dry weight minus ash weight) in milligrams per cubic meter.

Columns 42-44 DISPLACEMENT VOLUME OF SAMPLE

Enter displacement volume of sample in milliliters per thousand cubic meters.

Column 45
MEIHOD APPLIED FOR MEASUREMENT
Enter whichever is applicable according to code.
1 - Large organisms were removed prior to volume analysis.
2 - Large organisms were left in sample during analysis.

Enter the smallest size of organisms that were removed prior to volume analysis in centimeters. If smallest size removed was 10 cm or greater, enter a zero. When size is expressed in unit volume, enter as follows.

$$
\begin{aligned}
& A-<5 \mathrm{cc} \\
& B-\geq 5 \mathrm{cc} \text { but }<10 \mathrm{cc} \\
& \mathrm{C}->10 \mathrm{cc}
\end{aligned}
$$

## Columns 47-49

AGE OF PLANKTON SAMPIE WHEN MEASURED
Enter, in Columns 47 and 48, the approximate number of days or months the sample has been stored before being examined. The first digit is 0 when the number is less than 10. After 99 days, use months. Enter the following code in Column 49.

$$
\begin{aligned}
& D-\operatorname{Day}(s) \\
& M-\operatorname{Month}(s)
\end{aligned}
$$

Columns 50-51
KJETIDARL NITROGEN
Enter the nitrogen content of the sample as determined by the Kjeldahl method in micrograms per cubic meter.

Columns 52-53
CARBON CONIENT
Enter the carbon content of the sample in micrograms per cubic meter.

Column 54
TAXONOMIC STATUS
Enter whichever is applicable according to code.
1-Sample taxonomically unanalyzed
2 - Sample enumerated to family level or above
3 - Sample enumerated to generic level or below

Columns 55-59
POPULATION DENSITY
Enter the number of zooplankton organisms per cubic meter of water.

Columns 60-62
TOTAL NUMBER OF SPECIES
Enter total number of species as given or after computation.

Enter number of species as given or after computation.

## Columns 65-66

Do not code. These columns are reserved for future use.

Columns 67-70
SMITHSONIAN OCEANOGRAPHIC SORTING CENTER (SOSC) ACCESSION NUMBER

Enter the SOSC accession number.

| Columns $71-75$ | LIST OF TAXA |
| :--- | :--- |
| Enter according to code: |  |
|  | 1 - Present in aliquot |
| 2 - Present in sample, but not found in aliquot |  |
| 3 - Searched for, but not found in sample |  |
|  |  |
| Column 71 | Protozoa |
| Column 72 | Foraminifera |
| Column 73 | Radiolaria |
| Column 74 | Tintinnidae |
| Column 75 | Dinoflagellata |

Column 76
CARD TYPE
The numeral 2 appears in Column 76.

Columns 77-78
CARD NUMBER
The number 02 appears in Columns 77-78.

Columns 79-80
DECK NUMBER
The number 25 appears in Columns 79-80.

# ZOOPLANKTON DECK 

## Coding the Zooplankton Data Form

$$
\text { CARD TYPE } 3
$$

Columns 1-19
These columns are identical to those of Card Type 1 and need not be filled in. The information is reproduced from Card Type 1.

Columns 20-71
LIST OF TAXA
Enter according to code.
1-Present in aliquot
2 - Present in sample, but not found in aliquot
3 - Searched for, but not found in sample

Enter the code for the taxa marked with an asterisk even though these major taxa have been identified to the given subtaxa.

Column 20
Column 21
Column 22
Column 23
Column 24
Column 25
Column 26
Column 27
Column 28
Column 29
Column 30
Column 31
Column 32
Column 33
Column 34
Column 35
Column 36
Column 37
Column 38
Column 39
Column 40
Column 41
Column 42
Column 43
Column 44

Siphonophora
Other Hydromedusae
Scyphozoa
Ctenophora
Platyhelminthes
Chaetognatha
*Gastropoda
Pteropoda
Heteropoda
Nudibranchs
Cephalopoda
Polychaeta
Nemertea
Cladocera
Ostracoda
*Copepoda
Calanoida
Cyclopoida
Harpacticoida
Isopoda
Euphausiacea
Mysidacea
Decapoda
*Amphipoda
Gammaridae

Column 45
Column 46
Column 47
Column 48
Column 49
Column 50
Column 51
Column 52
Column 53
Column 54
Column 55
Column 56
Column 57
Column 58
Column 59
Column 60
Column 61
Column 62
Column 63
Column 64
Column 65
Column 66
Column 67
Column 68
Column 69
Column 70
Column 71

Hyper11dae
Cumacea
*Thaliacea
Salpidae
Doliolidae
Pyrosomidae
Ascidiacea
Larvacea
Anthozoa larvae
Pelecypoda larvae
Gastropoda larvae
Cephalopoda larvae
Decapoda (Crust.) larvae
Stomatopoda larvae
Cirripedia larvae
Copepoda larvae
Bryozoa larvae
Brachiopoda larvae
Nemertea larvae
Platyhelminthes larvae
Annelida larvae
Trochophore larvae
Echinodermata larvae
Protochordate larvae
Fish eggs
Fish larvae
Phytoplankton retained

Columns 72-75
Do not code. These columns are reserved for future use.

Column 76
CARD TYPE
The numeral 3 appears in Column 76 .

Columns 77-78
CARD NUMBER
The number 03 appears in Columns 77-78.

Columns 79-80
The number 25 appears in Columns 79-80.

## national oceanographic data center

ZOOPLANKTON DATA FORM




# Coding the Benthos Data Form 

## CARD TYYE I

## Columns 1-5

These columns provide a cumulative identification reference which is assigned by the NODC prior to processing. This number must be obtained from the NODC for cards punched outside the NODC.

Columns 6-8
CONSECUTIVE STATION NUMBER
Station numbers will be assigned and coded by the NODC unless the card is punched outside the NODC. Stations will be numbered consecutively and w111 start at 001 for each new cruise regardless of originator's numbering.

Columns 9-11
MARSDEN TEN-DEGREE SQUARE
Enter the number of the Marsden ten-degree square. A Marsden Square Chart is provided in Appendix I to help locate the station's position according to the Marsden Square System.

Column 12
MARSDEN FIVE-DEGREE SQUARE
Enter the number of the Marsden five-degree (quadrant) square. See Appendix $I$.

Columns 13-14
MARSDEN ONE-DEGREE SQUARE
Enter the number of the Marsden one-degree square. This is obtained by uniting the unit numbers of the degrees latitude and degrees longitude, respectively. For example, the one-degree square for the position $35^{\circ} 20^{\prime} \mathrm{N}_{0}$, $148^{\circ} 10^{\prime} \mathrm{W}$. is 58.

Enter whichever is applicable according to code. Column 15 must be filled in; estimate the environmental type if necessary.

Column 15

TYPE

0 - Inland waters
1 - Littoral zone
2 - Harbor
3 - Estuary
4 - Shelf
5 - Slope
6 - Canyon
7 - Rise or ridge
8 - Plain
9 - Deep, including trench or trough

Column 16
DEPTH RANGE
0 - $0-50 \mathrm{~m}$
1 - $\quad 51-100 \mathrm{~m}$
2 - 101-200 m
3 - 201-500 m
4 - 501-1000 m
5 - 1001-2000 m
$6-2001-3000 \mathrm{~m}$
7 - 3001-4000 m
8 - 4001-6000 m
$9>6000 m$

Column 17
PERIOD OF DAY OF SAMPIING
Enter whichever is applicable according to code.

$$
\begin{aligned}
& 1-0000-0600 \text { hours } \\
& 2-0600-1200 \text { hours } \\
& 3-1200-1800 \text { hours } \\
& 4-1800-2400 \text { hours }
\end{aligned}
$$

When the above code is not applicable, enter as follows.

$$
\begin{aligned}
& 5 \text { - A.M. } \\
& 6 \text { - P.M. } \\
& 7 \text { - Period covers both A.M. and P.M. }
\end{aligned}
$$

Columns 18-19
MONTH

Enter the month as determined by GMP using Arabic numerals Ol through 12.

Columns 20-21 DAY
Enter day of month as determined by GMT. Use Arabic numerals Ol through 31.

Columns 22-23
Enter last two digits of year as determined by GMT.

Enter the hour and tenths of an hour when sampling was inftiated. Table 1 converts minutes to tenths of an hour.

Columns 27-29
GREENWICH MEAN TTME (GMT) OF SAMPLTIVG
Enter the hour and tenths of an hour when sampling was initiated. Table 1 converts minutes to tenths of an hour. Table 2 converts local time to GMT.

Columns 30-34
LATIIUDE
Enter the latitude in degrees and minutes. Enter $\mathbb{N}$ or $\underline{S}$ in Column 34.

Columns 35-40
IONGITUDE
Enter the longitude in degrees and minutes. Enter $\underset{E}{ }$ or $\mathbb{W}$ in Column 40.

Columns 41-42
COUNITRY
Enter the NODC Country Code as shown in Table 3.

Columns 43-44 INSTITUTION

Enter the institution responsible for the data analysis as shown in the Institution Code in Table 4.

Columns 45-48
ORIGINATOR'S CRUISE NUMBER
Enter the number, alphabetic or alpha-numeric designator, or its closest equivalent assigned to the cruise by the originator. Leave blank if unknown.

Columns 49-53
ORIGINATOR'S STATION NUMBER
Enter the number, alphabetic or alphamumeric designator, or its closest equivalent assigned to the station by the originator.

Columns 54-55
NAVIGATIONAL SYSTEM
Fnter the Navigational System Code as shown in Table 5.

Enter uncorrected sounding depth in meters. If depth is corrected, enter a red dash over the numeral in Column 56. When a red dash appears over Column 56, x overpunch Column 56. Table 6 converts fathoms to meters. Table 7 converts feet to meters.

Column 61
SAMPLING DEVICE
Enter whichever is applicable according to code:
1 - Trawl
2 - Dredge
3 - By hand, diver
4 - By hand, shore collection
5 - Flxed gear
9 - Other

Columns 62-63
WIDITH OF GEAR AT IHE MOUITH WHEN IN OPERATION

Enter the mouth width in meters.

Columns 64-65
SAMPLING CAPACITY OF GEAR
Enter gear sampling capacity in cubic meters.

Columns 66-67
DURATION OF SAMPLING
Enter duration of sampling in minutes. When the duration exceeds 99 minutes, enter the number of hours in Columns 66 and tenths of an hour in Column 67. When hours and tenths of an hour are recorded, enter a red dash over Column 66. When a red dash appears over Column 66, x overpunch Column 66.

Column 68
SHIP SAMPLING SPEFD
Enter ship's speed at time of sampling in knots. Use zero if the ship is anchored or drifting. Use letters to designate ship's speed above 9 knots; $A=10$ knots, $B=11$ knots, etc. The letter $O$ is to be omitted.

Enter whichever is applicable according to code:

```
I - Sand
2 - Muddy sand
3-Sandy mud
4 - Mud
5 - Gravel
6 - Gravel and sand
7 - Hard clay
8 - Rock
9- Shell
A - Shelly sand
B - Shelly mud
```


## Columns 70-74

C - Coral
D - Clay
E - Clayey silt
F - Silty clay
G - Sand-silt-clay
H - Clayey sand
I - Silty sand
J - Sand and rock
K - Shell-mud-sand
L - Sandy silt
M - Silty clay and rock

SURFACE FEATURES OF THE SEA FLOOR
Indicate the presence of the following material by entering the numeral 1 in the appropriate column(s).

Column 70 - Boulders
Column 71 - Nodules
Column 72 - Cobbles
Column 73 - Pebbles
Column 74 - Shells or shell fragments

Column 75
BOTTOM PHOTOGRAPHS
Enter whichever is applicable according to code.

$$
\begin{aligned}
& 1 \text { - Color, stereo } \\
& 2 \text { - Black \& white, stereo } \\
& 3 \text { - Color, single } \\
& 4 \text { - Black \& white, single } \\
& 5 \text { - More than one type }
\end{aligned}
$$

Column 76
CARD TYPE
The numeral 1 appears in Column 76.
Columns 77-78
CARD NUMBER
The number 01 appears in Columns 77-78.
Columns 79-80
The number 26 appears in Columns 79-80.

# BENITHOS DECK <br> Coding the Benthos Data Form 

CARD TYPE 2

## Columns 1-19

These columns are identical to those of Card Type $l$ and need not be filled in. The information is reproduced from Card Type 1.

Columns 20-21 TOTAL VOLUME OF SAMPLE

Enter total volume of sample in cubic decimeters.

Columns 22-24
VOLUME OF SAMPLE RETAINED
Enter volume of sample retained in cubic centimeters.

Columns 25-28
WET WEIGHT OF SAMPLE
Enter wet weight of sample in grams.

Columns 29-31
AMOUNT OF INORGANIC PORTION RETAINED
Enter amount of inorganic portion retained in cubic millimeters.

Columns 32-34
WEIGHT OF LIVING MATTER
Enter the weight of living matter in grams per cubic meter.

Column 35

METHOD OF DETERMINING THE WEIGHT OF LIVING MATTER

Enter whichever is applicable according to code:
1-Computed
2 - Chemical
9 - Other

Enter whichever is applicable according to code.
l - By hand
2-Sieve
3 - Shaker table
9 - Other

Column 37
SMAL工 ORGANISMS
Enter whichever is applicable according to code.
1 - Retained
2 - Discarded
3 - Lost

Columns 38-39
MINIMUM SIZE RETAINED
Enter the minimum size of the organisms retained in millimeters. When less than one millimeter, enter to hundredths, and place a red dash over Column 38. When a red dash appears over Column 38, x overpunch Column 38.

Column 40
TAXONOMIC STAIUS
Enter whichever is applicable according to code.
l-Sample taxonomically unanalyzed
2 - Sample enumerated to the family level
3 - Sample enumerated to the generic level or below

Columns 41-44
POPULATION DENSITY
Enter the number of organisms per square meter of bottom.

Columns 45-47
TOTAL NUMBER OF SPECIES
Enter total number of species as given or after computation.

Columns 48-49
NUMBER OF SPECIES CONSTITUTING 90\% OF SAMPLE

Enter number of species as given or after computation.

Do not code. These columns are reserved for future use.

Columns 56-59
SMITHSONIAN OCEANOGRAPHIC SORTING CENTER (SOSC) ACCESSION NUMBER

Enter the SOSC accession number.

## Columns 60-75

LIST OF TAXA

Enter according to code.
1-Present in sample
2 - Searched for, but not found in sample

| Column 60 | Radiolaria |
| :--- | :--- |
| Column 61 | Cillata |
| Column 62 | Porifera |
| Column 63 | Hydrozoa |
| Column 64 | Scyphozoa |
| Column 65 | Alcyonaria |
| Column 66 | Gorgonacea |
| Column 67 | Pennatulacea |
| Column 68 | Other Alcyonaria |
| Column 69 | Actiniaria |
| Column 70 | Madreporaria |
| Column 71 | Zoanthidea |
| Column 72 | Antipatharia |
| Column 73 | Ceriantharia |
| Column 74 | Platyhelminthes |
| Column 75 | Aschelminthes |

Column 76
CARD TYPE
The numeral 2 appears in Column 76.

Columns 77-78
CARD NUMBER
The number 02 appears in Columns 77-78.

Columns 79-80
DECK NUMBER

The number 26 appears in Columns 79-80.

These columns are identical to those of Card Type 1 and need not be filled in. The information is reproduced from Card Type 1.

Columns 20-72
LIST OF TAXA
Enter according to code.
l - Present in sample
2 - Searched for, but not found in sample

Column 20 Nematoda
Column 21 Nemertea
Column 22 Gastrotricha
Column 23 Kinorhyncha
Column 24 Priapulida
Column 25 Bryozoa
Column 26 Ectoprocta
Column 27 Entoprocta
Enter the code in Column 25 (Bryozoa) even though the phylum had been divided into the Ectoprocta and Entoprocta.

Column 28
Column 29
Column 30
Column 31
Column 32
Column 33
Column 34
Column 35
Column 36
Column 37
Column 38
Column 39

Pogonophora
Phoronida
Chaetognatha
Brachiopoda
Monoplacophora
Amphineura
Scaphopoda
Cephalopoda
Pelecypoda
Gastropoda
Prosobranchiata
Opisthobranchiata

Enter the code in Column 37 (Gastropoda) even though the class had been divided into Prosobranchiata and Opisthobranchiata.

Column 40
Column 41
Column 42
Column 43
Column 44
Column 45
Column 46
Column 47
Column 48
Column 49
Column 50
Column 51
Column 52
Column 53
Column 54
Column 55
Column 56
Column 57
Column 58
Column 59
Column 60
Column 61
Column 62
Column 63
Column 64
Column 65
Column 66
Column 67
Column 68
Column 69
Column 70
Column 71
Column 72

Sipunculida
Echiurida
Archiannelida
Oligochaeta
Polychaeta
Crustacea
Cirripedia
Natantia
Palinura
Astacura
Hippidea
Galatheidea
Thalassinidea
Paguridea
Brachyrura
Stomatopoda
Isopoda
Tanaidacea
Amphipoda
Cumacea
Ostracoda
Pycnogonida
Asteroidea
Crinoidea
Holothurioidea
Echinoidea
Ophiuroidea
Ascidiacea
Hemichordata
Cephalochordata
Other invertebrates
Fishes
Algae

Columns 73-75
Do not code. Reserved for future use.

Column 76
CARD TYPE
The numeral 3 appears in Column 76.

Column 77-78
CARD NUMBER
The number 03 appears in Columns $77-78$.

Columns 79-80
DECK NUMBER
The number 26 appears in Columns 79-80.





## TABLE 1

Tenths Conversion
Conversion from seconds (of position) or minutes (of time) to tenths of minutes or hours

| Range of <br> Secs. or Mins. | Tenths of <br> Mins. or Hrs. |
| :---: | :---: |
| $00-05$ | 0 |
| $06-11$ | 1 |
| $12-17$ | 2 |
| $18-23$ | 3 |
| $24-29$ | 4 |
| $30-35$ | 5 |
| $36-41$ | 6 |
| $42-47$ | 7 |
| $48-53$ | 8 |
| $54-59$ | 9 |

FOLLOWING DAY EXPLANATION：
Conversion from local time to Greenwich mean time（GMT）

| $\stackrel{\sim}{\sim}$ |  | $8$ | 万 | \％ | \％ | \％ | \＆ | $\because$ | $\hat{0}$ | $\infty$ | a | 은 | $=$ | $\simeq$ | $\stackrel{\square}{\square}$ | $\pm$ | $\sim$ | $\stackrel{-}{-}$ | $\wedge$ | $\infty$ | $\cdots$ | $\stackrel{\sim}{\sim}$ | ～ | $\sim$ | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ |  | $\cdots$ | $\stackrel{8}{8}$ | こ | N | \％ | \％ | $\sim$ | \％ | 人 | © | 8 | 은 | $=$ | $\simeq$ | $\stackrel{\sim}{\sim}$ | $\pm$ | $\because$ | $\pm$ | $\wedge$ | $\stackrel{\infty}{-}$ | $\cdots$ | $\stackrel{\sim}{\sim}$ | $\bar{\sim}$ | ～ |
| $\bigcirc$ |  | N | $\stackrel{m}{\sim}$ | $\stackrel{\square}{\circ}$ | $\stackrel{\rightharpoonup}{0}$ | \％ | ¢ | ठ | $\approx$ | $\bigcirc$ | 人 | $\stackrel{\infty}{\circ}$ | 5 | 응 | $=$ | $\sim$ | $\cdots$ | $\pm$ | $\sim$ | $\stackrel{\square}{-}$ | $\wedge$ | $\stackrel{\infty}{\sim}$ | $\stackrel{\square}{-}$ | $\stackrel{\sim}{\sim}$ | त |
| $a$ 1 |  | え | ～ | $\stackrel{\sim}{\sim}$ |  | － | ก | \％ | 8 | \％ | $\bigcirc$ | 人 | \％ | \％ | 은 | $=$ | $\cong$ | $\cdots$ | $\pm$ | $\sim$ | $\bigcirc$ | $\wedge$ | $\stackrel{\infty}{\sim}$ | $\cdots$ | $\stackrel{\sim}{\sim}$ |
| $\infty$ 1 | I | $\stackrel{\sim}{\sim}$ | $\bar{\sim}$ | ～ | $\stackrel{\sim}{\sim}$ | $\stackrel{8}{8}$ | ठ | กั | ¢ | ठ̇ | ก | $\bigcirc$ | 人 | \％ | 8 | 응 | $=$ | $\underset{\sim}{\sim}$ | $\stackrel{\square}{\square}$ | $\pm$ | $\sim$ | $\bigcirc$ | $\wedge$ | $\pm$ | $\stackrel{\square}{-}$ |
| N <br> 1 |  | $\bigcirc$ | $\stackrel{\sim}{\sim}$ | त | N | ～ | $\stackrel{8}{8}$ | $\overrightarrow{0}$ | ～ | ¢ | ¢ | ＾ | $\bigcirc$ | － | $\infty$ | 9 | 앙 | $=$ | $\sim$ | $\cdots$ | $\pm$ | $\sim$ | $\because$ | $\wedge$ | $\stackrel{\sim}{-}$ |
| $\cdots$ |  | $\stackrel{\infty}{\sim}$ | $\stackrel{\square}{\square}$ | $\stackrel{\sim}{\sim}$ | え | ～ | $\stackrel{\sim}{\sim}$ |  | － | N | $\bigcirc$ | ठ | $\check{\circ}$ | $\bigcirc$ | ¢ | $\infty$ | 8 | 응 | $\pm$ | $\simeq$ | $\stackrel{m}{\square}$ | $\pm$ | $\simeq$ | $\stackrel{\square}{-}$ | $\therefore$ |
| $\stackrel{10}{1}$ | ل | $\wedge$ | $\stackrel{\sim}{\sim}$ | $\bigcirc$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\rightharpoonup}{\sim}$ | ～ | $\stackrel{\sim}{\sim}$ | $\stackrel{8}{\circ}$ | $\overline{0}$ | N | $\stackrel{\sim}{\circ}$ | ¢ | ะ | $\bigcirc$ | ¢ | $\infty$ | 8 | 응 | $=$ | $\simeq$ | $\stackrel{m}{\sim}$ | $\pm$ | $\simeq$ | $\stackrel{\square}{-}$ |
| $\stackrel{\square}{1}$ |  | $\stackrel{\square}{-}$ | $=$ | $\infty$ | 9 | $\stackrel{\sim}{\sim}$ | $\bar{\sim}$ | N | $\stackrel{\sim}{\sim}$ | $\stackrel{\square}{\circ}$ | $\bar{\square}$ | N | $\stackrel{\sim}{\circ}$ | \％ | ก | $\bigcirc$ | 人 | © | 8 | 은 | $=$ | $\simeq$ | $\stackrel{\sim}{\square}$ | $\pm$ | $\cong$ |
| $\cdots$ |  | $\cdots$ | $\stackrel{\square}{-}$ | $\wedge$ | $\stackrel{\infty}{\sim}$ | の | $\stackrel{\sim}{\sim}$ | त | $\sim$ | $\stackrel{\sim}{\sim}$ |  | $\overline{0}$ | N | \％ | \％ | \％ | $\bigcirc$ | ¢ | \％ | 8 | 은 | $=$ | $\cong$ | $\cdots$ | $\pm$ |
| $\stackrel{\sim}{\sim}$ |  | $\pm$ | $\cong$ | $\stackrel{\square}{-}$ | $\wedge$ | $\infty$ | $\bigcirc$ | $\stackrel{\sim}{\sim}$ | え | ～ | ～ |  | $\overrightarrow{0}$ | 欠̃ | \％ | \％ | $\stackrel{\sim}{\circ}$ | $\bigcirc$ | ¢ | $\infty$ | 8 | ㅇ． | च | $\simeq$ | $\stackrel{\square}{\square}$ |
| $\cdots$ |  | $\stackrel{m}{\sim}$ | I | $\cong$ | $\stackrel{\square}{-}$ | － | $\cdots$ | 9 | $\stackrel{\sim}{\sim}$ | え | ～ | $\stackrel{\sim}{\sim}$ | $\stackrel{8}{\sim}$ | － | \％ | \％ | ¢ | $\check{\circ}$ | \％ | 人 | © | 8 | 윽 | 二 | $\sim$ |
| $\bigcirc$ | 1 W | $\sim$ | $\cdots$ | ＊ | $\cdots$ | 0 | $\stackrel{ }{ }$ | $\infty$ | 9 | 2 | へ | N | べ |  | こे | 0 | 0 | 8 | $\delta$ | 0 | 人 | 8 | 8 | 9 | $\geqslant$ |
| F | $Z$ | $=$ | $\cong$ | $\stackrel{m}{\square}$ | － | $\sim$ | $\stackrel{-}{-}$ | $\wedge$ | ® | $\stackrel{\square}{\sim}$ | $\stackrel{\sim}{\sim}$ | च | ～ | $\stackrel{\sim}{\sim}$ | $\stackrel{8}{9}$ | 亏 | N | $\stackrel{\sim}{\circ}$ | ठ | $\ldots$ | $\bigcirc$ | 人 | ¢ | 9 | 은 |
| $\sim$ + |  | 은 | $=$ | $\simeq$ | － | $\pm$ | $\sim$ | $\stackrel{\square}{\square}$ | $\Sigma$ | $\stackrel{\infty}{\sim}$ | a | $\stackrel{\sim}{\sim}$ | $\bar{\sim}$ | N | n | $\stackrel{8}{8}$ | － | \％ | \％ | ठ̇ | n | $\%$ | 人 | $\infty$ | 8 |
| m + | $0$ | 8 | 안 | $=$ | $\simeq$ | $\stackrel{\text { m }}{ }$ | $\pm$ | $\sim$ | $\stackrel{\square}{-}$ | $\wedge$ | $\stackrel{\infty}{\sim}$ | の | 2 | ～ | ～ | $\stackrel{\sim}{\sim}$ |  | － | N | \％ | ठ | \％ | $\%$ | 人 | $\infty$ |
| + + |  | © | \％ | $\bigcirc$ | こ | $\simeq$ | $\cdots$ | － | $\simeq$ | $\bigcirc$ | $\Sigma$ | $\stackrel{\infty}{\sim}$ | の | $\stackrel{\sim}{\sim}$ | $\bar{\sim}$ | ～ | $\stackrel{\sim}{\sim}$ | $\stackrel{8}{8}$ | $\bar{\square}$ | \％ | \％ | \％ | ת | ¢ | 人 |
| $\stackrel{\sim}{0}$ | $\propto$ | － | ® | 잉 | 응 | $=$ | $\sim$ | $\stackrel{\text { n }}{\sim}$ | $\pm$ | $\simeq$ | $\bullet$ | $\Sigma$ | $\infty$ | 9 | $\stackrel{\sim}{\sim}$ | え | N | N | $\stackrel{8}{2}$ | － | \％ | \％ | ठ̇ | $\check{\circ}$ | $\because$ |
| $\begin{aligned} & 0 \\ & +1 \end{aligned}$ | $\cdots$ | \％ | 人 | \％ | \％ | 응 | 二 | $\underline{\sim}$ | － | $\pm$ | $\cong$ | $\pm$ | $\wedge$ | ＠ | の | $\stackrel{\sim}{\sim}$ | $\bar{\sim}$ | ～ | $\stackrel{\sim}{\sim}$ | $\stackrel{0}{i}$ | － | ～ | $\stackrel{\%}{\circ}$ | 8 | ® |
| N + |  | \％ | $\bigcirc$ | 人 | © | 8 | 안 | $=$ | $\sim$ | $\stackrel{\text { m }}{\sim}$ | $\pm$ | $\cong$ | $\pm$ | $\wedge$ | $\stackrel{\infty}{\infty}$ | 9 | $\stackrel{\sim}{\sim}$ | $\bar{\sim}$ | N | N | $\stackrel{8}{8}$ | $\bar{\square}$ | N | $\cdots$ | ¢ |
| $\infty$ + + |  | \％ | \％ | \％ | 人 | \％ | \％ | 응 | $=$ | $\simeq$ | $\stackrel{m}{\square}$ | $\pm$ | $\cong$ | $\stackrel{\square}{-}$ | $\Sigma$ | ゅ | 9 | $\stackrel{\sim}{\sim}$ | $\bar{\sim}$ | N | $\stackrel{\sim}{\sim}$ | $\stackrel{8}{\circ}$ | － | $\bigcirc$ | $\cdots$ |
| 0 + + |  | \％ | ¢ | ת | $\bigcirc$ | 人 | \％ | 8 | 은 | $=$ | $\sim$ | $\stackrel{\text { m }}{\sim}$ | $\pm$ | $\cong$ | $\stackrel{\square}{\square}$ | $\Sigma$ | $\infty$ | の | $\stackrel{\sim}{2}$ | $\bar{\sim}$ | ～ | $\stackrel{\sim}{N}$ | 8 | $\bar{\square}$ | N |
| 앆 <br> + |  | \％ | \％ | ¢ | ～ | ¢ | o | \％ | 8 | $\bigcirc$ | 二 | $\sim$ | $\stackrel{\sim}{\square}$ | $\pm$ | $\cong$ | $\stackrel{\square}{-}$ | N | $\otimes$ | の | $\stackrel{\sim}{\sim}$ | $\vec{\sim}$ | N | $\stackrel{\sim}{\sim}$ | $\stackrel{8}{\circ}$ | $\bar{\square}$ |
| 7 + + | $x$ | － | N | \％ | ठ゙ | ก | 8 | 人 | © | 8 | 은 | 二 | ～ | $\stackrel{\text { m }}{ }$ | $\pm$ | $\simeq$ | $\stackrel{\square}{-}$ | $\wedge$ | $\infty$ | $\stackrel{\square}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\vec{\sim}$ | N | N | $\stackrel{8}{8}$ |
| + + + |  | $\stackrel{8}{8}$ | － | N | ¢ ${ }^{\text {º }}$ | ठ̇ | \％ | $\bigcirc$ | 人 | $\infty$ | 8 | 은 | $=$ | $\simeq$ | － | $\pm$ | $\cong$ | $\stackrel{\square}{-}$ | $\stackrel{ }{ }$ | $\cdots$ | の | $\stackrel{\sim}{\sim}$ | ～ | N | N |

COUNITRY ..... CODE
ALBANIA ..... 72
ALGERIA ..... AL
ANGOLA ..... AN
ARGENTINA ..... 08
AUSTRALIA ..... 09
AUSTRIA ..... 10
BELGIUM ..... 11
BRAZIL ..... 14
BULGARIA ..... 15
BURMA ..... 12
CANADA ..... 18
CEYLON ..... 19
CHILE ..... 20
CHINA ..... 21
COLOMBIA ..... 22
CONGO (BRAZZAVIL工E) ..... RC
COSTA RICA ..... CR
CUBA ..... CU
DAHOMEY ..... DA
DENMARK ..... 26
FINLAND ..... 34
FrRANCE ..... 35
GERMANY ..... 06
GHANA ..... GH
GREECE ..... 36
GREENLAND ..... GL
GUINEA ..... GU
ICELAND ..... 46
INDIA ..... 41
INDONESIA ..... 42
IRELAND ..... 45
ISRAFL ..... 47
ITALY ..... 48
IVORY COAST ..... IC
JAPAN ..... 49
KOREA ..... 24

TABLE 3 (CONT'D)
COUNTRY ..... CODE
MALAGASY REPUBLIC ..... 55
MALAYSIA ..... MS
MAURITIUS ..... MA
MEXICO ..... 57
MONACO ..... MO
MOROCCO ..... 56
MOZAMBIQUE ..... MZ
NEITHERLLANDS ..... 64
NETHERLANDS ANTIILES ..... NA
NEW CALEDONIA ..... 59
NEW ZEALAND ..... 61
NIGERIA ..... NI
NORWAY ..... 58
PANAMA ..... PA
PAKISTAN ..... 62
PERU ..... 65
PHIIIIPPINES ..... 66
POLAND ..... 67
PORTUGAL ..... 68
RUMANIA ..... 73
SENEGAL ..... SE
SIERRA IEONE ..... SL
SOUTH AFRICA ..... 91
SOVIET UNION ..... 90
SPAIN ..... 29
SUDAN ..... SU
SWEDEN ..... $T 7$
THAILAND ..... 86
TUNISIA ..... 88
TURKEY ..... 89
UNITED ARAB REPUBLIC (EGYPT) ..... 27
UNITED KINGDOM ..... 74
UNITED STATES OF AMERICA ..... 31
URUGUAY ..... 92
VENEZUELA ..... 93
VIET-NAM94
WEST INDIES FEDERRATION ..... WI
YUGOSLAVIA ..... 95
ZANZIBAR ..... ZA
Albania (72)
Fisheries Management Research Station (Durres) ..... 01
Algeria (AL)Castiglione Agriculture and Fishery ExperimentalStation01
Oceanographic Institute of Algeria (AIgiers) ..... 02
Angola (AN)
Council for Overseas Investigations, Center for Fisheries Biology, Angola Branch (Baio Farta) ..... 01
Argentina (08)
Argentine Antarctic Institute (Buenos Aires) ..... 01
Mar del Plata Marine Biological Institute (Mar del Plata) ..... 02
Mar del Plata Station of Marine Biology and Fisheries Technology (Puerto Mar del Plata) ..... 03
Puerto Deseado Marine Biological Station (Puerto Deseado) ..... 04
Puerto Quequen Hydrobiological Station of the National Institute for Natural Science Research (Puerto Quequen) ..... 05
Australia (09)
Australian Museum (Sydney) ..... 02
CSIRO Marine Biological Laboratory (Cronulla) ..... 03
Heron Island Research Station (Heron Island, Queensland) ..... 04
Marine Biological Station (Port Moresby, N. G.) ..... 05
The Marine Laboratory (Zoology Dept.), University of Adelaide (Adelaide) ..... 06
The Marine Laboratory (Zoology Dept.), University of New England (Armidale) ..... 07
Victoria Department of Fisheries and Wildlife, Marine and Freshwater Laboratories (Melbourne) ..... 08
Western Australia Fisheries Department (Perth) ..... 09
Belgium (11)
The Belgium Royal Institute for Natural Sciences (Brussels) ..... 01
Institute for Marine Research (Ostende) ..... 02
Institute for Scientific Research in Central Africa (Brussels) ..... 03
Brazil (14)
Oswaldo Cruz Institute, Hydrobiological Laboratory (Pinheiro Island) ..... 01
San Sebastian Marine Biological Laboratory (Sao Sebastiao) ..... 02
University of Recife, Institute of Oceanography (Recife) ..... 03
University of Sao Paulo, Oceanographic Institute (Sao Paulo) ..... 04
Bulgaria (15)
Institute of Fishery Research (Varna) ..... 01
Burma (12)
Union of Burma Applied Research Institute (Rangoon) ..... 01
Bellairs Research Institute, McG111 University
(See West Indies Federation)
Bowdoin Scientific Station (St. John, New Brunswick) ..... 01
Fisheries Research Board of Canada (Ottawa) Arctic Unit (Montreal) ..... 02
Atlantic Oceanographic Group (Dartmouth, Nova Scotia) ..... 11
Biological Station (London, Ontario) ..... 04
B1ological Station (St. Andrews, New Brunswick) ..... 05
Biological Station (St. John's, Newfoundland) ..... 06
Biological Station, (Nanaimo, British Columbia) ..... 07
Pacific Oceanographic Group, (Nanaimo, British Columbia) ..... 10
National Research Council of Canada, Atlantic Regional Laboratory (Halifax, Nova Scotia) ..... 09
Nova Scotia Research Foundation (Halifax, Nova Scotia) ..... 03
Zuebec Department of Fisheries, Biological Center (Quebec) ..... 08
Quebec Department of Fisheries, Laboratory of Marine Biology (Quebec) ..... 12
Quebec Department of Fisheries, La Tabatiere Experimental Flshing Station (Quebec) ..... 13
Quebec Ministry of Fisheries and Game, Nabisipi Station (Quebec) ..... 14
University of British Columbia, Institute of Fisheries (Vancouver, British Columbia) ..... 15
University of British Columbia, Institute of Oceanography (Vancouver, British Columbia) ..... 16
Vancouver Public Aquarium Association Laboratory (Vancouver, British Columbia) ..... 17
Bedford Institute of Oceanography (Dartmouth, Nova Scotia) ..... 18
Dalhousie University Institute of Oceanography (Halifax, Nova Scotia) ..... 19

## Cey1on (19)

## Ceylon Department of Fisheries, Fisheries Research Station (Colombo)

 Ch1le (20)Chilean Navy ..... 01
Ministry of Agriculture, Dept. Fish and Game,
Fisheries Laboratory (Valparaiso) ..... 02
San Antonio Fishery Biology Station (San Antonio) ..... 03
University of Chile, Center for Zoological Investigations, Dept. Hydrobiology (Santiago) ..... 04
University of Chile, Marine Biological Station (Valparaiso) ..... 05
University of Chile of the North Zone, Dept. Scientific Investigations of Antofagasta, Marine Biological Station (Antofagasta) ..... 06
University of Concepción, Central Institute of Biology (Concepción) ..... $0 T$
Zoological Institute, Southern University of Chile (Valdivia) ..... 08
Columbia (22)
Columbian Navy ..... 01
Congo (Brazzaville) ( $R C$ )
Oceanographic and Fisheries Center (Brazzaville) ..... 01
Costa Rica (CR)
Inter-American Tropical Tuna Commission, Costa RicaBranch (Puntarenas)01
Cuba (CU)

Cuban Institute of Technological Investigations (Havana)
FHsherles Research Center (Havana) ..... 02
University of Oriente, Laboratory of Marine Biology (Santiago de Cuba) ..... 03
University of Villanueva, Dept. Marine Research
(Havana) ..... 04
Dahomey (DA)
Center for Scientific Study and Applied Fishery Technology (Cotonou) ..... 01
Denmark (26)
Carlsberg Foundation, Marine Laboratory (Esbjerg) ..... 01
Collections of the Carlsberg Foundation's DANA Expeditions (Charlottenlund) ..... 02
Copenhagen University, Marine Biological Laboratory (Flisinore) ..... 03
Copenhagen University Zoological Museum (Copenhagen) ..... 04
Danish Institute for Fishery and Marine Research (Charlottenlund) ..... 05
Dermarks Aquarium, Physiological Laboratory (Charlottenlund) ..... 06
Fisherles Research Leiboratory, Faeroes (Faeroe Islands) ..... 07
The Isejord - Laboratory (Skibby) ..... 08
Germany (06)
Council for the Development of Bremen Lands, the Institute for Marine Research (Bremerhaven) ..... 01
Helgoland Biological Stations (Helgoland and List auf sylt) ..... 02
Institute for Coastal and Inland Fisheries (Hamburg-Altona) ..... 03
Germany (06) (Cont'd)
Institute for Nets and Gear Investigation (Hamburg~Altona) ..... 04
Institute for Sea Fisheries (Hamburg-Altona) ..... 05
Max Planck Society for the Promotion of the Sciences, Max Planck Institute for Marine Biology (Wilhelmshaven) ..... 06
Norderney Research Station (Friesian Islands) ..... 07
Senckenberg Association for Scientific Research, "Senckenberg" Institute for Marine Geology and Biology (WilheImshaven) ..... 08
University of Hamburg, Institute for Hydrobiology and Fisheries Science (Hamburg-Altona) ..... 09
University of Hamburg, Zoological Institute and Museum, Division of Hydrobiology (Hamburg) ..... 10
University of Kiel, Institute for Marine Science (Kiel) ..... 11
Malaysia (MS)
Fisheries Research Laboratories, Malaya (Penang) ..... 01
Tropical Fish Culture Research Institute (Malacca) ..... 02
Finland (34)
Biological Laboratory of the Institute of Marine Research (Helsinki) ..... 01
Finnish Ministry of Agriculture and Fisheries, Bureau for Fisheries Research (Helsinki) ..... 02
University of Turku, Marine Biological Station (Iohm and Turku) ..... 03
University of Helsinki, Tvaerminne Zoological Station (Helsinki and Tvaerminne) ..... 04
Arcachon Biological Station (Arcachon) ..... 01
Arago Laboratory (Banyuls-sur-Mer) ..... 02
Blarritz Station of Applied Hydrobiology (Biarritz) ..... 03
Catholic University of Lille, Biological Station, Charles Maurice Laboratory (Ambleteuse) ..... 04
Center of Scientific Studies and Research of Biarritz (Biarritz) ..... 05
Center for Terrestrial and Limnetic Ecology (Marseille) ..... 06
College de France, Marine Biological Laboratory, Concarneau (Concarneau) ..... 07
Group d'Etudes et de Recherches Sous-marines (Toulon) ..... 08
Laboratory of Bacterial Chemistry and Biological Corrosion (Bouches du Rhone) ..... 09
Marine Laboratory of Luc-sur-Mer (Luc-sur-Mer) ..... 10
Marine Station of Endoume (Marseille) ..... 11
National Museum of Natural History (Paris) ..... 12
Oceanographical Institute (Paris) ..... 13
Oceanographic Research Center (La Rochelle and Antibes) ..... 14
Roscoff Biological Station (Roscoff) ..... 1.5
Scientific and Technical Institute of Marine Fisheries
Arcachon Laboratory ..... 16
Auray Laboratory ..... 17
Biarritz Laboratory ..... 18
Boulogne-sur-Mer Laboratory ..... 19
La Rochelle Laboratory ..... 20
La Tremblade Laboratory ..... 21
Roscoff Laboratory ..... 22
Sete Laboratory ..... 23

## France (35) (Cont'd)

University of Lille, Institute of Regional Marine Biology (Wimereux) ..... 24
University of Paris, Laboratory of Marine Botany (Par1s) ..... 25
University of Rennes, Laboratory of Marine Biology (Ie Croisic) ..... 26
Zoological Station of Villefranche (Villefranche- sur-Mer) ..... 27
Greece (36)
The Marine Biochemistry Laboratory (Limni) ..... 01
Greenland (GL)
Copenhagen University, Arctic Station (Disko Island) ..... 01
The Ministry for Greenland, Greenland Fisheries Organization, Fisheries Laboratory (Godthaeb) ..... 02
Hong Kong (74)
Hong Kong Fisheries Research Station (Aberdeen) ..... 01
Iceland (46)
Fisheries Research Institute (Reykjavik) ..... 01
India (41)
Andhra University, Department of Zoology, Field Marine Laboratory (Waltair) ..... 02
Annamalai University, Marine Biological Station (Porto Novo) ..... 03
Central Inland Fisheries Research Institute (Barrackpore) ..... 04

## India (41) (Cont'd)

Central Marine Fisheries Research Station (Manadapam Camp) ..... 05
Madras State Department of Fisheries (Madras) ..... 06
Maharashtra State Department of Fisheries, Marine Biological Research Station (Ratnagiri) ..... 07
Institute of Science, Department of Zoology (Bombay) ..... 08
The Marine Biological Stations, West Hill (Vizhinjam, Thiruvalla, Perumanoor) ..... 09
Taraporevala Aquarium and Marine Biological Research Station (Bombay) ..... 10
University of Kerala, Department of Marine Biology and Fisheries (Trivandrum) ..... 11
University of Madras, Zoological Research Laboratory (Madras) ..... 01
Indonesia (42)
Central Research Institute for Hydrobiology and Fisheries (Bogor, Pasar Minggu, Danau Panggang, Makassar, Palembang) ..... 02
Inland Fisheries Research Institute (Bogor) ..... 03
Institute of Marine Research (Jakarta) ..... 04
Ireland (45)
University College, Cork Biology Station (Lough Ine) ..... 01
Israel (47)
Hebrew University-Hadassah Medical School, Laboratory for Fish Diseases (Jerusalem) ..... 01
Hebrew University, Department of Botany, Algal Laboratory (Jerusalem) ..... 02
Sea Fisheries Research Station (Haifa) ..... 03
Central Hydrobiological Laboratory (Rome) ..... 01
"Diacinto Cestoni" Aquarium and Marine Biological Laboratory (Livorno) ..... 02
Italian Center for Thalassographic Studies (Venice) ..... 03
Italian Institute for Thalassographic Studies (Venice) ..... 04
Laboratory for the Study of the Radioactive Contamination of the Sea (Fiascherino) ..... 05
Marine Biological Institute of the Adriatic (Venice) ..... 06
Messina Institute of Experimental Thalassography (Messina) ..... 07
Naples Zoological Station (Naples) ..... 08
Taranto Institute of Experimental Thalassography (Taranto) ..... 09
Trieste Institute of Experimental Thalassography (Irieste) ..... 10
Tyrrhenian Center for Thalassographic Studies (Genoa) ..... 11
University of Bologna, Fano Marine Biological Laboratory (Fano) ..... 12
University of Messina, Hydrobiological Institute (Messina) ..... 13
University of Padua, Chioggia Hydrobiological Station (Chioggia) ..... 14
Ivory Coast (IC)
Ministry of Animal Production, Center for Oceano- graphic Research (Abidjan) ..... 01

## Japan (49)

Central Meteorological Observatory ..... 03
Fisheries Agency (Tokyo) ..... 39
Hakodate Marine Observatory ..... 04
Hiroshima University, Faculty of Fisheries and Animal Husbandry (Hiroshima) ..... 13
Hiroshima University, Mukaishima Marine Biological Station (Hiroshima) ..... 22
Hokkaido Gakugei University, Shirikishinai Marine Station for Biological Instruction (Shirikishinai) ..... 43
Hokkaido Regional Fisheries Research Laboratory (Yoich1) ..... 35
Hokkaido University, Akkeshi Marine Biological Station (Akkeshi) ..... 08
Hokkaido University, Faculty of Fisheries, Oshoro Marine Biological Station (Otaru) ..... 09
Hokkaido University, Faculty of Science, Institute of Algological Research (Muroran) ..... 10
Japan Sea Regional Fisheries Research Laboratory (Niigata) ..... 11
Japan University, Marine Biological Station (Mabori) ..... 12
Japanese Hydrographic Office ..... 01.
Kagawa Prefectual Fisheries Experimental Station (Kagawa-ken) ..... 14
Kagoshima University, Faculty of Fisheries (Kagoshima) ..... 15
Kochi University, Usa Marine Biological Station (Usa) ..... 16
Kyoto University, Department of Fisheries and Misaki Marine Biological Institute (Misaki) ..... 17
Kyoto University, Seto Marine Biological Laboratory (Shirahama) ..... 18
Japan (49) (Cont'd)
Kyushu University, Institute of Fisheries, Fisheries Research Laboratory (Jukuoka) ..... 19
Meteorological Agency, Marine Division (Kobe, Hakodate, Nagasaki) ..... 20
Mie Prefectural Fisheries Experimental Station (Mie-ken) ..... 21
Nagasaki Marine Observatory ..... 05
Nagasaki University, F1sheries Institute (Nagasaki) ..... 23
Nagoya University, Fisheries Laboratory (Anjo) ..... 24
Nagoya University, Sugashima Marine Biological Station (Sugashima) ..... 25
Naikai Regional Fisheries Research Laboratory (Hiroshima) ..... 26
Nilgata University, Sado Marine Biological Station (Alkawa) ..... 27
Nonka1 Regional Fisheries Research Laboratory (Koch1-sh1) ..... 28
Okayama University, Tamano Marine Laboratory ..... 29
Prefectural University of Mie, Faculty of Fisheries (Tsu) ..... 30
Seikai Regional Fisheries Research Laboratory (Nagasaki-sh1) ..... 31
Tohoku Regional Fisheries Research Laboratory (Suginoiriomote) ..... 32
Tohoku University, Faculty of Agriculture, Depart- ment of Fisheries and Onagawa Fisheries Laboratory (Onagawa) ..... 33
Tohoku University, Marine Biological Station (Asamushi) ..... 34
Tokai Regional Fisheries Research Laboratory (Tokyo) ..... 07

## Japan (49) (Cont'd)

Tokyo Kyoidu University, Shimoda Marine Biological Station (Shimoda) ..... 36
Tokyo University, Faculty of Agriculture, Fisheries Laboratory (Shinmaiko, Ikawazu) ..... 37
Tokyo University, Faculty of Science, Misaki Marine Biological Station (M1saki) ..... 38
Tokyo University of Fisheries (Tokyo) ..... 02
Tokyo University of Fisheries, Kominato Marine Biological Laboratory (Awa-Kominato) ..... 40
Whales Research Institute (Tokyo) ..... 41
Yokohama National University, Manazuru Marine Laboratory for Science Education (Iwa) ..... 42
Korea (24)
Korea Central Fisheries Experimental Station (Pusan) ..... 01
Marine Products Experimental Station (Pusan) ..... 02
Pusan Fisheries College, Department of Sea Produce (Pusan) ..... 03
Malagasy Republic (55)
Madagascar Institute of Scientific Research, Oceanographic and Fishery Station (Nossi Be) ..... 01
Mauritius (MA)
Mauritius Institute (Port Louis) ..... 01
Mexico (57)
Autonomous University of Baja California, MarineResearch Center, College of Marine Science(Ensenada)01

## Mexico (57) (Cont'd)

Fisheries Department and Allied Industries, Marine and Fresh-Water Biological Laboratories (Mazatlan, Guaymas) ..... 02
Technologic Institute of Veracruz, Marine Biological Station (Veracruz) ..... 03
Monaco (MO)
Oceanographic Museum of Monaco (Monaco)01
Morocco (56)
Cherifiem Scientific Institute (Rabat) ..... 01
Marine Fisheries Institute of Morocco (Casablanca) ..... 02
Mozambique (MZ)
Maritime Department, Marine Biological Station (Lourenco Marques) ..... 01
Netherlands (64)
Laboratory for Anti-Fouling Research (Den Helder) ..... 01
Netherlands Institute for Fishery Investigations (Ijmuiden) ..... 02
Netherlands Institute of Sea Research (Den Helder) ..... 03
Royal Netherlands Academy of Sciences, HydrobiologicalInstitute, Department for Estuarine Research(Zeeland)04
Netherlands Antilles (NA)
Caribbean Marine Biological Institute (Curacao) ..... 01
Noumea Aquarium, Biological Marine Station (Noumea)
Oceanographic Laboratory of the Institute of French
Oceania (Noumea)

## New Zealand (61)

Auckland University, Marine Biological Station
(Auckland)
New Zealand Marine Department, Fisheries Laboratory (Wellington) ..... 02
New Zealand Oceanographic Institute (Wellington) ..... 03
Portobello Marine Biological Station (Portobello) ..... 04
Norway (58)
The Directorate of Fisheries, Institute of Marine Research (Bergen) ..... 01
Norwegian Institute of Seaweed Research (Trondheim) ..... 02
The Floedevigen Biological Station (Arendal) ..... 03
Tromsoe Museum, Marine Biological Station (Tromsoe) ..... 04
Trondheim Biological Station (Trondheim) ..... 05
University of Bergen Biological Station (Espegrend) ..... 06
University of Oslo, Biological Station (Droebak) ..... 07
University of Oslo, Institute of Marine Biology Section A (Oslo) ..... 08
University of Oslo, Institute of Marine Biology Section B (Blindern) ..... 09
University of Oslo, the State Institute of Whale Research (Oslo) ..... 10

## Pakistan (62)

Pakistan Ministry of Food and Agriculture, Marine Fisheries Department (Karachi) ..... 01
Zoological Survey Department, Marine Biological Research Laboratory (Karachi) ..... 02
Peru (65)
Guano Company (Lima) ..... 03
Marine Resources Research Institute (Callao) ..... 04
Peru Ministry of Agriculture, Department of Fish and Game, Division of Fisheries Research, Hydrobiological Laboratory (Lima) ..... 05
Philippines (66)
Dagat-Dagatan Salt-Water Fishery Experimental Station (Quezon C1ty) ..... 01
University of the Philippines, College of Fisheries, Department of Inland Fisheries (Quezon City) ..... 02
University of the Philippines, College of Fisheries, Department of Marine Fisheries (Manila) ..... 03
University of the Philippines, Marine Biological Station (Oriental Mindoro) ..... 04
Poland (67)
Biological Station Gorki Wschodnie (Sobieszewo via Danzig) ..... 01
Sea Fisheries Institute (Kolobrzeg, Swinoujscie) ..... 02
Portugal (68)
Council for Overseas Investigations, Center for Fisheries Biology (Lisbon) ..... 01
Ministry of the Navy, Marine Biological Institute (Lisbon) ..... 02
Zoological Institute and Marine Zoological Station "Dr. August Nobre" (Oporto) ..... 03
Republic of Guinea (GU)
Ministry of Rural Economics, Marine Fisheries Technology Section (Conakry) ..... 01
Republic of Panama (PA)
Inter-American Tropical Tuna Commission, Panama Laboratory (Balboa) ..... 01
Republic of South Africa (91)
Oceanographic Research Institute, University of Natal (Natal) ..... 01
Republic of South Africa Department of Commerce and Industries, Division of Sea Fisheries (Cape Town) ..... 02
Rhodes University, Department of Ichthyology (Grahamstown) ..... 03
University of Cape Town, Department of Oceanography (Rondebosch) ..... 04
Republic of Vietnam (94)
Oceanographic Institute of Nhatrang (Nhatrang) ..... 01
Roumanian People's Republic (73)
Acvarium Public "Prof. Ioan Borcea" (Constanta) ..... 01
Marine Research Station (Constanta) ..... 02
Marine Zoological Station "Prof. Ioan Borcea" (Constanta) ..... 03
Sulina Marine Research Station (Sulina) ..... 04
Senegal (SE)
Fisheries Research Center, Joal (Joal) ..... 01

## Senegal (SE) (Cont'd)

French African Institute, Marine Biology Department (Dakar) ..... 02
Oceanographic Laboratory of Tiaroye/Mer-Senegal (Dakar) ..... 03
Sierra Leone (SL)
Ministry of Natural Resources, Fisheries Division (Freetown) ..... 01
Spain (29)
Canary Island Oceanographic Laboratory (Canary Islands) ..... 01
Institute of Fishery Research (Barcelona, Blanes Cadiz, Castellon, Vigo) ..... 02
Malaga Laboratory (Malaga) ..... 03
Palma de Mallorca Oceanographic Laboratory (Palma de Mallorca) ..... 04
Santander Oceanographic Laboratory (Santander) ..... 05
Spanish Institute of Oceanography (Madrid) ..... 06
Vigo Oceanographic Laboratory (Vigo) ..... 07
Sudan (SU)
Sudan Ministry of Animal Resources, MarineResearch Laboratory (Khartoum)01
Sweden (77)
Gothenburg University, Marine Botanical Institute(Gothenburg)01
The Royal Board of Fisheries (Lysekil, Drottnigholm) ..... 02

## Sweden (T7) (Cont'd)

Marine Zoological Station at Kristineberg(Fiskebackskil)03
Uppsala University, Institute for Physiological Botany (Uppsala) ..... 04
Uppsala University, Klubbans Biological Station (Fiskebackskil) ..... 05
Taiwan (China) (21)
National Taiwan University, Institute of Fishery
Biology (Taipe1) ..... 01
Taiwan Fisheries Research Institute (Chilung) ..... 02
Thailand (86)
The Ministry of Agriculture, Department of Fisheries (Chundhaburi Province, Prachuab Kirikhan, Patalung Rayong) ..... 02
Tunisia (88)
Salambo Oceanographic Station (Salarmbo) ..... 01
Turkey (89)
Fisheries Directorate of the Meat and Fish Office (Istanbul) ..... 01
Hydrobiological Research Institute (Trabzon, Canakkal) ..... 02
Union of Soviet Socialist Republics (90)
AS Estonian SSR (Tallinn) ..... 01
AS Ukrainian SSR (Kiev) ..... 02
Institute of Hydrobiology, AS USSR (Kiev) ..... 03
Institute of Microbiology, AS USSR (Moscow) ..... 04
Union of Soviet Socialist Republics (90) (Cont'd)
Institute of Oceanology, AS USSR (Moscow) ..... 05
Institute of Zoology, AS USSR (Leningrad) ..... 06
Kola Branch, AS USSR (Kirovsk) ..... 07
Sevastopol Biological Research Station, AS USSR (Sevastopol) ..... 08
The All-Union Research Institute of Marine Fisheries and Oceanography (VNIRO) (Arkhange1sk) ..... 09
The Azerbaijan Fisheries Research Laboratory ASERNIRI, (Baku) ..... 10
The Azov and Black Sea Research Institute of Marine Fisheries and Oceanography AZCHERNIRO (Kerch) ..... 11
The Baltic Research Institute of Marine Fisheries and Oceanography (BALINIRO)(Kaliningrad) ..... 12
The Caspian Research Institute of Marine Fisheries and Oceanography (DASPNIRO) (Astrakhan) ..... 13
The Latvian Fisheries Research Institute (Riga) ..... 14
The Pacific Research Institute of Fisheries and Oceanography (TINRO) (Khabarovsk, Petropavlovsk- Kamchatski1, Magadan, Sakhalinskaya Oblast, Okhotsk) ..... 15
The Polar Research and Designing Institute of Marine Fisheries and Oceanography PINRO (Murmansk) ..... 16
Yakutsk Branch, AS USSR (Alma-Alta) ..... 17
United Arab Republic (27)
Alexandria Institute of Hydrobiology (Alexandria) ..... 01
University of Alexandria, Department of Oceanography (Alexandria) ..... 02
University of Cairo, Hydrobiological Institute (Ataga) ..... 03
University of Cairo, Institute of Oceanography (Cairo) of
University of Cairo, Marine Biological Station (Al-Ghardaqa) ..... 05
United Kingdom (England) (74)
Fisheries Laboratory, Burnham-on-Crouch (Burnham- on-Crouch) ..... 02
Fisheries Laboratory, Lowestoft (Lowestoft) ..... 03
Radiobiological Laboratory (Lowestoft) ..... 04
University of Durham, King's College, Dove Marine Laboratory (Cullercoats) ..... 05
National Institute of Oceanography (Wormley) ..... 06
The Plymouth Laboratory of the Marine Biological Association of the United Kingdom (Plymouth) ..... 07
United Kingdom Atomic Energy Authority, Radiobiology Group, Health and Safety Branch (Cumberland) ..... 08
University of Liverpool, Marine Biological Station (Port Erin) ..... 09
University of London, Queen Mary College, Marine Biological Laboratory (Whitstable) ..... 10
(Scotland)
Gatty Marine Laboratory and Wellcome Laboratory of Comparative Pharmacology (Fife) ..... 11
Institute of Seaweed Research (Midlothian) ..... 12
The Marine Laboratory, Aberdeen (Aberdeen) ..... 13
The Oceanographic Laboratory (Edinburgh) ..... 14
Scottish Marine Biological Association, Marine Station, Millport (Millport) ..... 15
(Wales)
British Ministry of Agriculture, Fisheries and Food, Fisheries Experiment Station (Conway) ..... 16
Federated University of Wales, Marine Biological Station (Anglesey) ..... 17
United States of America (31)
Alabama Marine Laboratory (Bayou LaBatre, Ala.) ..... 33
Alaska Department of Fish and Game, Kitoi Bay Research Institute (Kodiak, Alaska) ..... 34
American Museum of Natural History (New York) ..... 35
American Museum of Natural History, Lerner Marine Laboratory (Bimini) ..... 36
American University (Washington, D. C.) ..... 37
Arctic Research Laboratory, USAF, (Fairbanks, Alaska) ..... 38
Atlantic Refining Company (Dallas, Tex.) ..... 39
Batelle Memorial Institute, North Florida Research Station (Daytona Beach, Fla.) ..... 40
Bears Bluff Laboratories (Wadmalaw Island, S.C.) ..... 41
Beaudette Foundation, Institute of Marine Bioresearch (Santa Ynez, Calıf.) ..... 42
Bermuda Biological Station (Bermuda) ..... 43
Bingham Oceanographic Laboratory, Yale University (New Haven, Conn.) ..... 44
California Academy of Sciences (San Francisco, Calif.) 4 ..... 45
California Company (New Orleans, La.) ..... 46
California Institution of Technology, Division of the Geological Sciences (Pasadena, Calif.) ..... 47
California State Department of Fish and Game Marine Resources Branch
Hopkins Marine Station (Pacific Grove) ..... 48
Stanford Laboratory (Stanford) ..... 49
Eureka Laboratory (Eureka) ..... 50
Cape Haze Marine Laboratory (Sarasota, Fla.) ..... 51
Chesapeake Bay Institute, The Johns Hopkins Univ.(Annapolis, Md.)21
United States of America (31) (Cont'd)
Chesapeake Biological Laboratory, Univ. of Maryland (Solomons, Md.) ..... 52
Continental 011 Company (Los Angeles, Calif.) ..... 54
Duke University Marine Laboratory (Beaufort, N.C.) ..... 55
Eniwetok Marine Biological Laboratory, U. of Hawai1 (Eniwetok Atoll, Marshall Is.) ..... 56
Florida State Board of Conservation, Marine Labora- tory (St. Petersburg, Fla.) ..... 57
Florida State University, Oceanographic Institute (Tallahassee, Fla.) ..... 58
Fort Johnson Marine Biological Laboratory, College of Charleston (Charleston, S.C.) ..... 59
Friday Harbor Laboratories, University of Washington (Friday Harbor, Wash.) ..... 60
General Electric Company, Defense Electronics Division (Santa Barbara, Calif.) ..... 61
Gulf Coast Research Laboratory (Ocean Springs, M1ss.) ..... 32
Gulf Oil Corporation (Houston, Tex.) ..... 62
Harvard University (Cambridge, Mass.) ..... 63
Hawai1 Department of Land and Natural Resources, Division of Fish and Game (Honolulu, Hawai1) ..... 64
Hawai1 Marine Laboratory, Univ. of Hawai1 (Honolulu, Hawai1) ..... 65
Hopkins Marine Station, Stanford Univ. (Pacific Grove, Calif.) ..... 16
Hudson Laboratories (Dobbs Ferry, N.Y.) ..... 26
Humble 011 and Refining Company (Houston, Tex.) ..... 66
Institute of Oceanography and Marine Biology (Oyster Bay, N.Y.) ..... 67
Inter-American Tropical Tuna Commission (La Jolla, Calif.) ..... 68
United States of America (3I) (Cont'd)
International Pacific Halibut Commission (Seattle, Wash.) ..... 69
Kerckhoff Marine Laboratory, CALTECH (Corona del Mar, Calif.) ..... 71
Lamont Geological Observatory, Columbia Univ. (Palisades, N.Y.) ..... 12
Lehigh University, Marine Science Center(Bethlehem, Pa.) 73
Lockheed Aircraft Corporation (Burbank, Calif.) ..... 74
Louisiana State University, Coastal Studies Institute (Baton Rouge, La.) ..... 75
Maine State Department of Inland Fisheries and Game Fishery Research and Management Division (Orono, Me.) ..... 76
Marine Biological Laboratory (Woods Hole, Mass.) ..... 77
Marineland of the Pacific Biological Laboratory (Palos Verdes Estates, Calif.) ..... 79
Marineland Research Laboratory (St. Augustine, Fla.) ..... 80
Massachusetts Division of Fisheries and Game Field Headquarters (Westboro, Mass.) ..... 81
Massachusetts Institute of Technology, Dept. of Geology and Geophysics (Cambridge, Mass.) ..... 82
Mendocino Biological Field Station, Pacific Union College (Angwin, Calif.) ..... 83
Monterey 011 Company (Los Angeles, Calif.) ..... 84
Narragansett Marine Laboratory, Univ. of R. I. (Kingston, R. I.) ..... 30
New Jersey Division of Fish and Game, Fisheries
Laboratory (Seaside Park, N. J.) ..... 85
New Jersey Oyster Research Laboratory (New Brunswick, N. J.) ..... 86
New York Aquarium, Department of Marine Biochemistry and Ecology (New York, N. Y.) ..... 87
United States of America (3I) (Cont'd)
New York University (New York, N. Y.) ..... 88
Oregon Fish Commission Research Laboratories (Clackamas, Ore.) ..... 23
Oregon Institute of Marine Biology (Charleston, Ore.) ..... 89
Oregon State University (Corvallis, Ore.) ..... 03
Pacific Marine Station, Univ. of the Pacific (Dillon Beach, Calif.) ..... 90
Princeton University, Dept. of Geology (Princeton, N. J.) ..... 91
Robert A. Taft Sanitary Engineering Center, Shellfish Sanitation Laboratory (Gig Harbor, Wash.) ..... 92
Scripps Institution of Oceanography (La Jolla, Calif.) Ol
Texas A \& M University, Dept. of Oceanography and Meteorology (College Station, Tex.) ..... 24
Texas State Game and Fish Commission Laboratories (Rockport, Tex.) ..... 93
The Johns Hopkins University, Department of Oceanography (Baltimore, Md.) ..... 70
University of Alaska (College, Alaska) ..... Cl
University of California, Dept. of Mineral Technology (Berkeley, Calif.) ..... C 2
University of California, Marine Laboratory (Santa Barbara, Calıf.) ..... 78
University'of Chicago, Dept. of the Geophysical Sciences (Chicago, Ill.) ..... C3
University of Connecticut, Marine Research Laboratory (Storrs, Conn.) ..... C4
University of Delaware Marine Laboratories (Lewes, Del.) ..... C5
University of Florida Marine Laboratory (Cedar Key, Fla.) ..... C6
United States of America (3I) (Cont'd)
University of Georgia Marine Institute (Sapelo Island, Ga.) ..... C7
University of Kansas, Dept. of Geology (Lawrence, Kan.) C8
University of Miami, Institute of Marine Science (Miami, Fla.) ..... 25
University of Michigan (Ann Arbor, Mich.) ..... C9
University of North Carolina, Institute of Fisheries Research (Morehead City, N. C.) ..... D1
University of Puerto Rico, Institute of Marine Biology (Mayaguez, P. R.) ..... D2
University of Southern California, The Allan Hancock Foundation for Scientific Research (Los Angeles, Calif.) ..... 19
University of Texas, Institute of Marine Science (Port Aransas, Tex.) ..... D3
University of Washington, College of Fisheries and Fisheries Research Institute (Seattle, Wash.) ..... D4
University of Washington, Department of Oceanography (Seattle, Wash.) ..... 09
University of Washington, Laboratory of Radiation Biology ..... 72
University of Wisconsin (Madison, Wis.) ..... D5
United States of America (31) (Cont'd)
U. S. Coast and Geodetic Survey ..... 10
U. S. Coast Guard ..... 06
U. S. Department of the Interior, Fish and Wildife Service, Bureau of Commercial FHsheries
Biological Laboratory, Auke Bay, Alaska ..... 94
" " Beaufort, N. C. ..... 95
Boothbay Harbor, Me. ..... 96
Brunswick, Ga. ..... 97
Galveston, Tex. ..... 98
Gulf Breeze, Fla. ..... 99
Honolulu, Hawai1 ..... Al
La Jolla, California ..... A2
Marine Mammal Research (Seattle, Wash.) ..... A3
Miami, Fla. ..... A 4
Milford, Conn. ..... A5
Oxford, Md. ..... A6
San Diego, Calif. ..... A7
Seattle, Wash. ..... A8
Stanford, Calif. ..... A9
Washine ior, D. C. ..... Bl
Woods Hole, Mass. ..... B2
Ichthyological Laboratory (Washington, D. C.) ..... B3
U. S. Department of the Interior, Fish and Wildiffe Service, Bureau of Sports Fisheries
Sandy Hook Marine Laboratory (Highlands, N. J.) ..... B4
U. S. National Museum (Smithsonian Institution) ..... B5
U. S. Naval Arctic Research Laboratory (Point Barrow, Alaska) ..... B6
U. S. Naval Oceanographic Office (Suitland, Md.) ..... 07
U. S. Naval Postgraduate School, Dept. of Meteorology and Oceanography (Monterey, Calif.) ..... B7
U. S. Naval Radiological Defense Laboratory (San Francisco, Calif.) ..... B8
U. S. Naval Underwater Sound Laboratory (New London, Conn.) ..... 08

## United States of America (3I) (Cont'd)

U. S. Navy Electronics Laboratory (San Diego, Calif.) ..... 20
U. S. Navy Mine Defense Laboratory (Panama City, Fla.) ..... B9
Virginia Institute of Marine Science (Glouchester Point, Va.) ..... 28
Walla Walla College Biological Station (Anacortes, Wash.) ..... D6
Washington State Department of Fisheries, Biological Division Laboratory (Quilcene, Wash.) ..... D7
Washington University, Department of Geology and Geological Engr. (St. Louis, Mo.) ..... D8
William F. Clapp Laboratories, Inc. (Duxbury, Mass.) ..... 53
Woods Hole Oceanographic Institution (Woods Hole, Mass.) ..... 02
Uruguay (92)
Oceanography and Fishery Service, Department of Science and Technology (Punta del Este) ..... 02
Venezuela (93)Venezuela Ministry of Agriculture and Livestock,
Division of Fish and Game, Fishery BiologyLaboratory (Caiguire-Cumana Estado Sucre)01
Margarita Marine Research Station (Punta de Piedras) ..... 02
University of Oriente, Oceanographic Institute(Cumana)03
West Indies Federation (WI)
Bellairs Research Institute, McGill Univ.
(St. James, Barbados)01
University of the West Indies, Marine Laboratoryat Port Royal (Port Royal, Jamaica)02

## Yugoslavia (95)

Biological Institute, Dubrovnik (Dubrovnik) ..... 01
Biological Institute, Rovinj/Istra (Rovinj/Istra) ..... 02
Institute of Oceanography and Fisheries (Split) ..... 03
Zanz1bar (ZA)Laboratory of the East African Marine FisheriesResearch Organization (Zanzibar)01

## TABLE 5

## NAVIGATIONAL SYSTTEMS CODE

```
 l - CONSOL
 2 - DECCA NAVIGATOR
 3- DECCA SURVEY
 4- DECCA HI-FIX
 5 - TWO-RANGE DECCA
 6 - DECIRA
 7- DELRAC
 8 - ELECIRONIC POSIIION INDICATOR (EPI)
 9-GEE
10 - GEODIMEIER (MARK I, II, III, AND IV)
11 - LAMBDA DECCA
12 - IORAC
13 - LORAN A
14 - IORAN B
15 - LORAN C
16 - MARINE AUTOITRAVERSE POSITIONER (MAP)
17 - MICRODIST (HJECIROTAPE)
18 - MICROWAVE POSIIION-FIXING SYSTEM (MPFS)
19 - NAVARHO
20 - OMEGA (RADUX)
21 - PULSED LIIGHT RANGING EQUIPMENNT
22 - RAYDIST (E, R, N, AND ER)
23 - RAYDIST (DM)
24 - SHORAN (HIRAN)
25 - RANA
26 - TTETLUROMETER (HYDRODIST) AERODIST) (MICRODISTANCER)
27 - SOFAR
28- RAFOS
29 - SAIFHLITTE NAVIGATION
```

TABLE 6
Depth
Conversion from fathoms to meters
(1 fathom $=1.8288$ meters)

| Fathoms | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Meters | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
| Fathoms | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 00 | 0000 | 0002 | 0004 | 0005 | 0007 | 0009 | 0011 | 0013 | 0015 | 0016 |
| 10 | 0018 | 0020 | 0022 | 0024 | 0026 | 0027 | 0029 | 0031 | 0033 | 0035 |
| 20 | 0037 | 0038 | 0040 | 0042 | 0044 | 0046 | 0048 | 0049 | 0051 | 0053 |
| 30 | 0055 | 0057 | 0059 | 0060 | 0062 | 0064 | 0066 | 0068 | 0069 | 0071 |
| 40 | 0073 | 0075 | 0077 | 0079 | 0080 | 0082 | 0084 | 0086 | 0088 | 0090 |
| 50 | 0091 | 0093 | 0095 | 0097 | 0099 | 0101 | 0102 | 0104 | 0106 | 0108 |
| 60 | 0110 | 0112 | 0113 | 0115 | 0117 | 0119 | 0121 | 0123 | 0124 | 0126 |
| 70 | 0128 | 0130 | 0132 | 0134 | 0135 | 0137 | 0139 | 0141 | 0143 | 0144 |
| 80 | 0146 | 0148 | 0150 | 0152 | 0154 | 0155 | 0157 | 0159 | 0161 | 0163 |
| 90 | 0165 | 0166 | 0168 | 0170 | 0172 | 0174 | 0176 | 0177 | 0179 | 0181 |
| 100 | 0183 | 0185 | 0187 | 0188 | 0190 | 0192 | 0194 | 0196 | 0198 | 0199 |
| 110 | 0201 | 0203 | 0205 | 0207 | 0208 | 0210 | 0212 | 0214 | 0216 | 0218 |
| 120 | 0219 | 0221 | 0223 | 0225 | 0227 | 0229 | 0230 | 0232 | 0234 | 0236 |
| 130 | 0238 | 0240 | 0241 | 0243 | 0245 | 0247 | 0249 | 0251 | 0252 | 0254 |
| 140 | 0256 | 0258 | 0260 | 0262 | 0263 | 0265 | 0267 | 0269 | 0271 | 0272 |
| 150 | 0274 | 0276 | 0278 | 0280 | 0282 | 0283 | 0285 | 0287 | 0289 | 0291 |
| 160 | 0293 | 0294 | 0296 | 0298 | 0300 | 0302 | 0304 | 0305 | 0307 | 0309 |
| 170 | 0311 | 0313 | 0315 | 0316 | 0318 | 0320 | 0322 | 0324 | 0326 | 0327 |
| 180 | 0329 | 0331 | 0333 | 0335 | 0336 | 0338 | 0340 | 0342 | 0344 | 0346 |
| 190 | 0347 | 0349 | 0351 | 0353 | 0355 | 0357 | 0358 | 0360 | 0362 | 0364 |
| 200 | 0366 | 0368 | 0369 | 0371 | 0373 | 0375 | 0377 | 0379 | 0380 | 0382 |
| 210 | 0384 | 0386 | 0388 | 0390 | 0391 | 0393 | 0395 | 0397 | 0399 | 0401 |
| 220 | 0402 | 0404 | 0406 | 0408 | 0410 | 0411 | 0413 | 0415 | 0417 | 0419 |
| 230 | 0421 | 0422 | 0424 | 0426 | 0428 | 0430 | 0432 | 0433 | 0435 | 0437 |
| 240 | 0439 | 0441 | 0443 | 0444 | 0446 | 0448 | 0450 | 0452 | 0454 | 0455 |
| 250 | 0457 | 0459 | 0461 | 0463 | 0465 | 0466 | 0468 | 0470 | 0472 | 0474 |
| 260 | 0475 | 0477 | 0479 | 0481 | 0483 | 0485 | 0486 | 0488 | 0490 | 0492 |
| 270 | 0494 | 0496 | 0497 | 0499 | 0501 | 0503 | 0505 | 0507 | 0508 | 0510 |
| 280 | 0512 | 0514 | 0516 | 0518 | 0519 | 0521 | 0523 | 0525 | 0527 | 0529 |
| 290 | 0530 | 0532 | 0534 | 0536 | 0538 | 0539 | 0541 | 0543 | 0545 | 0547 |

TABLE 6 (Cont'd)
Depth
Conversion from fathoms to meters
(1 fathom $=1.8288$ meters)

| Fathoms |  | 00 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 000 | 0549 | 0567 | 0585 | 0604 | 0622 | 0640 | 0658 | 0677 | 0695 |
| 400 | 0732 | 0750 | 0768 | 0786 | 0805 | 0823 | 0841 | 0860 | 0878 | 0896 |
| 500 | 0914 | 0933 | 0951 | 0969 | 0988 | 1006 | 1024 | 1042 | 1061 | 1079 |
| 000 | 1097 | 1116 | 1134 | 1152 | 1170 | 1189 | 1207 | 1225 | 1244 | 1262 |
| 700 | 1280 | 1298 | 1317 | 1335 | 1353 | 1372 | 1390 | 1408 | 1426 | 1445 |
| 800 | 1463 | 1481 | 1500 | 1518 | 1536 | 1554 | 1573 | 1591 | 1609 | 1628 |
| 900 | 1646 | 1664 | 1682 | 1701 | 1719 | 1737 | 1756 | 1774 | 1792 | 1811 |


| Fathoms | 000 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1000 | 1829 | 2012 | 2195 | 2377 | 2560 | 2743 | 2926 | 3109 | 3292 |
| 2000 | 3658 | 3840 | 4023 | 4206 | 4389 | 4572 | 4755 | 4938 | 5121 | 5304 |
| 3000 | 5486 | 5669 | 5852 | 6035 | 6218 | 6401 | 6584 | 6767 | 6949 | 7132 |
| 4000 | 7315 | 7498 | 7681 | 7864 | 8047 | 8230 | 8412 | 8595 | 8778 | 8961 |
| 5000 | 9144 | 9327 | 9510 | 9693 | 9876 | 10058 | 10241 | 10424 | 10607 | 10790 |

TABLE 7
Depth

> Conversion from feet to meters (tenths)
> (1 foot $=0.3048$ meter)

| Feet | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 0.0 | 0.3 | 0.6 | 0.9 | 1.2 | 1.5 | 1.8 | 2.1 | 2.4 | 2.7 |
| 10 | 3.0 | 3.4 | 3.7 | 4.0 | $4 \cdot 3$ | 4.6 | 4.9 | 5.2 | 5.5 | 5.8 |
| 20 | 6.1 | 6.4 | 6.7 | 7.0 | 7.3 | 7.6 | 7.9 | 8.2 | 8.5 | 8.8 |
| 30 | 9.1 | 9.4 | 9.8 | 10.1 | 10.4 | 10.7 | 11.0 | 11.3 | 11.6 | 11.9 |
| 40 | 12.2 | 12.5 | 12.8 | 13.1 | 13.4 | 13.7 | 14.0 | 14.3 | 14.6 | 14.9 |
| 50 | 15.2 | 15.5 | 15.8 | 16.2 | 16.5 | 16.8 | 17.1 | 17.4 | 17.7 | 18.0 |
| 60 | 18.3 | 18.6 | 18.9 | 19.2 | 19.5 | 19.8 | 20.1 | 20.4 | 20.7 | 21.0 |
| 70 | 21.3 | 21.6 | 21.9 | 22.3 | 22.6 | 22.9 | 23.2 | 23.5 | 23.8 | 24.1 |
| 80 | 24.4 | 24.7 | 25.0 | 25.3 | 25.6 | 25.9 | 26.2 | 26.5 | 26.8 | 27.1 |
| 90 | 27.4 | 27.7 | 28.0 | 28.3 | 28.7 | 29.0 | 29.3 | 29.6 | 29.9 | 30.2 |
| 100 | 30.5 | 30.8 | 31.1 | 31.4 | 31.7 | 32.0 | 32.3 | 32.6 | 32.9 | 33.2 |
| 110 | 33.5 | 33.8 | 34.1 | 34.4 | 34.7 | 35.1 | 35.4 | 35.7 | 36.0 | 36.3 |
| 120 | 36.6 | 36.9 | 37.2 | 37.5 | 37.8 | 38.1 | 38.4 | 38.7 | 39.0 | 39.3 |
| 130 | 39.6 | 39.9 | 40.2 | 40.5 | 40.8 | 41.1 | 41.5 | 41.8 | 42.1 | 42.4 |
| 140 | 42.7 | 43.0 | $43 \cdot 3$ | 43.6 | 43.9 | 44.2 | 44.5 | 44.8 | 45.1 | 45.4 |
| 150 | 45.7 | 46.0 | 46.3 | 46.6 | 46.9 | 47.2 | 47.5 | 47.9 | 48.2 | 48.5 |
| 160 | 48.8 | 49.1 | 49.4 | 49.7 | 50.0 | 50.3 | 50.6 | 50.9 | 51.2 | 51.5 |
| 170 | 51.8 | 52.1 | 52.4 | 52.7 | 53.0 | 53.3 | 53.6 | 53.9 | 54.3 | 54.6 |
| 180 | 54.9 | 55.2 | 55.5 | 55.8 | 56.1 | 56.4 | 56.7 | 57.0 | 57.3 | 57.6 |
| 190 | 57.9 | 58.2 | 58.5 | 58.8 | 59.1 | 59.4 | 59.7 | 60.0 | 60.4 | 60.7 |
| 200 | 61.0 | 61.3 | 61.6 | 61.9 | $62.2$ | $62.5$ |  |  |  |  |
| 210 | 64.0 | 64.3 | 64.6 | 64.9 | 65.2 | 65.5 | 65.8 | 66.1 | 66.4 | 66.8 |
| 220 | 67.1 | 67.4 | 67.7 | 68.0 | 68.3 | 68.6 | 68.9 | 69.2 | 69.5 | 69.8 |
| 230 | 70.1 | 70.4 | 70.7 | 71.0 | 71.3 | 71.6 | 71.9 | 72.2 | 72.5 | 72.8 |
| 240 | 73.2 | 73.5 | 73.8 | 74.1 | 74.4 | 74.7 | 75.0 | 75.3 | 75.6 | 75.9 |
| 250 | 76.2 | 76.5 | 76.8 | 77.1 | 77.4 | 77.7 | 78.0 | 78.3 | 78.6 | 78.9 |
| 260 | 79.2 | 79.6 | 79.9 | 80.2 | 80.5 | 80.8 | 81.1 | 81.4 | 81.7 | 82.0 |
| 270 | 82.3 | 82.6 | 82.9 | 83.2 | 83.5 | 83.8 | 84.1 | 84.4 | 84.7 | 85.0 |
| 280 | 85.3 | 85.6 | 86.0 | 86.3 | 86.6 | 86.9 | 87.2 | 87.5 | 87.8 | 88.1 |
| 290 | 88.4 | 88.7 | 89.0 | 89.3 | 89.6 | 89.9 | 90.2 | 90.5 | 90.8 | 91.1 |

TABLE 7 (Cont'd)
Conversion from feet to meters (tenths)
(1 foot $=0.3048$ meter)

| Feet | 00 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 91.4 | 94.5 | 97.5 | 100.6 | 103.6 | 106.7 | 109.7 | 112.8 | 115.8 | 118.9 |
| 400 | 121.9 | 125.0 | 128.0 | 131.1 | 134.1 | 137.2 | 140.2 | 143.3 | 146.3 | 149.4 |
| 0 | 152.4 | 155.4 | 158.5 | 161.5 | 164.6 | 167.6 | 170.7 | 173.7 | 176.8 | 179.8 |
| 600 | 182.9 | 185.9 | 189.0 | 192.0 | 195.1 | 198.1 | 201.2 | 204.2 | 207.3 | 210.3 |
| 700 | 213.4 | 216.4 | 219.5 | 222.5 | 225.6 | 228.6 | 231.6 | 234.7 | 237.7 | 240.8 |
| 800 | 243.8 | 246.9 | 249.9 | 253.0 | 256.0 | 259.1 | 262.1 | 265.2 | 268.2 | 271.3 |
| 900 | 274.3 | 277.4 | 280.4 | 283.5 | 286.5 | 289.6 | 292.6 | $295 \cdot 7$ | 298.7 | 301.8 |
| 1000 | 304.8 | 307.8 | 310.9 | 313.9 | 317.0 | 320.0 | 323.1 | 326.1 | 329.2 | 332.2 |
| 1100 | 335.3 | 338.3 | 341.4 | 344.4 | 347.5 | 350.5 | 353.6 | 356.6 | 359.7 | 362.7 |
| 1200 | 365.8 | 368.8 | 371.9 | 374.9 | 378.0 | 381.0 | 384.0 | 387.1 | 390.1 | 393.2 |
| 1300 | 396.2 | 399.3 | 402.3 | 405.3 | 408.4 | 411.5 | 414.5 | 417.6 | 420.6 | 423.7 |
| 1400 | 426.7 | 429.8 | 432.8 | 435.9 | 438.9 | 442.0 | 445.0 | 448.1 | 451.1 | 454.2 |
| 1500 | 457.2 | 460.2 | 563.3 | 466.3 | 469.4 | 472.4 | 475.5 | 478.5 | 481.6 | 484.6 |
| 1600 | 487.7 | 490.7 | 493.8 | 496.8 | 499.9 | 502.9 | 506.0 | 509.0 | 512.1 | 515.1 |
| 1700 | 518.2 | 521.2 | 524.3 | 527.3 | 530.4 | 533.4 | 536.4 | 539.5 | 542.5 | 545.6 |
| 1800 | 548.6 | 551.7 | 554.7 | 557.8 | 560.8 | 563.9 | 566.9 | 570.0 | 573.0 | 576.1 |
| 1900 | 579.1 | 582.2 | 585.2 | 588.3 | 591.3 | 594.4 | 597.4 | 600.5 | 603.5 | 606.6 |
| 2000 | 609.6 | 612.6 | 615.7 | 618.7 | 621.8 | 624.8 | 627.9 | 630.9 | 634.0 | 7.0 |
| 2100 | 640.1 | 643.1 | 646.2 | 649.2 | 652.3 | 655.3 | 658.4 | 661.4 | 664.5 | 667.5 |
| 2200 | 670.6 | 673.6 | 676.7 | 679.7 | 682.8 | 685.8 | 688.8 | 691.9 | 694.9 | 698.0 |
| 2300 | 701.0 | 704.1 | 707.1 | 710.2 | 713.2 | 716.3 | 719.3 | 722.4 | 725.4 | 728.5 |
| 2400 | 731.5 | 734.6 | 737.6 | 740.7 | 743.7 | 746.8 | 749.8 | 752.9 | 755.9 | 759.0 |
| 2500 | 762.0 | 765.0 | 768.1 | 771.1 | 774.2 | 777.2 | 780.3 | 783.3 | 786.4 | 789.4 |
| 2600 | 792.5 | 795.5 | 798.6 | 801.6 | 804.7 | 807.7 | 810.8 | 813.8 | 816.9 | 819.9 |
| 2700 | 823.0 | 826.0 | 829.1 | 832.1 | 835.2 | 838.2 | 841.2 | 844.3 | 847.3 | 850.4 |
| 2800 | 853.4 | 856.5 | 859.5 | 862.6 | 865.6 | 868.7 | 871.7 | 874.8 | 877.8 | 880.9 |
| 2900 | 883.9 | 887.0 | 890.0 | 893.1 | 896.1 | 899.2 | 902.2 | 905.3 | 908.3 | 911.4 |
| 3000 | 914.4 | 917.4 | 920.5 | 923.5 | 926.6 | 929.6 | 932.7 | 935.7 | 938.8 | 941.8 |
| 3100 | 944.9 | 947.9 | 951.0 | 954.0 | 957.1 | 960.1 | 963.2 | 966.2 | 969.3 | 972.3 |
| 3200 | 975.4 | 978.4 | 981.5 | 984.5 | 987.6 | 990.6 | 993.6 | 996.7 | 999.7 | 1002.8 |



MARSDEN SQUARE CHART

ONE DEGREE DIVISIONS OF MARSDEN SQUARES

WEST LONGITUDE

EAST LONGITUDE


| 85 | one degree square |
| :---: | :---: |
| 4 | QUADRANT |
| (0) 0 9 | marsden square |

A

Bausch and Lomb Spectronic 20
Bausch and Lomb Spectronic 340
Beckman DB Spectrophotometer
Beckman DK-2 Spectrophotometer
Beckman DU Spectrophotometer
Cary Model 14 Recording Spectrophotometer
Carl Zeiss Model 502104 Spectrophotometer
Carl Zeiss Model 502105 Spectrophotometer
Carl Zeiss Model 502108 Spectrophotometer
Carl Zeiss Model 502221 Spectrophotometer
Coleman Autoset Spectrophotometer Model 30
Coleman Junior Spectrophotometer Model 6A or 6D
Hitachi Perkin-Elmer Model 139 Spectrophotometer
Perkin-Elmer Model 202 Spectrophotometer
Unicam SP 500 Spectrophotometer
Other

FLOWMETER CODE

| Code | Manufacturer | Type |  |
| :--- | :--- | :--- | :---: |
| A | Bergen Nautik | Dial, 3 hands |  |
| B | G.M./Kahl | Counter |  |
| C | G.M./Kahl | Dial, 4 hands |  |
| D | Hydro-Bios | - |  |
| E | Hydrow • | For high speed plankton sampler "HAI" |  |
| F | Rigosha | Dial, 3 hands |  |
| G | TSK | Dial, 4 hands |  |
| H | TSK | Dial, 3 hands |  |
| I | Other |  |  |

NOTE: Information for Appendix III was obtained from International Marine Science, Vol, II, No. l, Jan. 1964, pp. 27-28. UNESCO, Place de Fontenoy, Paris $-7^{e}$, France.



Type
Standard net, vertical, closing
Standard net, vertical, closing
Standard net, horizontal, closing
Standard net, horizontal, closing
Apstein net, surface
Apstein, vertical, open, with head cone
Apstein, vertical, closing, with head cone
Apstein, vertical, closing, with head cone
Apstein, vertical, closing, with head cone
Hensen net
Hensen net withoat protecting net
Hensen net with protecting net
Nansen closing net, with head cone
Indian ocean Standard Net (IOSN)
IOSN, with Hansen bucket
IOSN, with bucket with bayonet joint and window
IOSN
IOSN
Stranin net, with crow-foot and swivel
Stranin net, with crow-foot and swivel
NORPAC net
NORPAC net
Plankton net for oblique haul
Plankton nets
Plankton net, without head cone
APPENDIX IV

| 0 |
| :--- |
| 0 |
| 0 |
| 0 |

Manufacturer
Lab. Oceanogr. Lab. Oceanogr.
Lab. Oceanogr. Lab. Oceanogr. Lab. Oceanogr. Hydro-B1os Hydro-B10s Hydro-B10s Lab. Oceanogr. Lab. Oceanogr. Lab. Oceanogr.
Hydro-Bios Lab. Oceanogr.
Lab. Oceanogr. - sofg-0.โр Hydro-Bios Hydro-B1os Hydro-B10s Hyaro-B10s R1gosha Lab. Oceanogr.
Lab. Oceanogr.
R1gosha
TSK
R1gosha
G.M./Kahl
Hydro-Bios


[^1] ,


APPENDIX IV (Cont ${ }^{1} \mathrm{~d}$ )


3/ 3-square mouth nets, pressure-operated closing-opening devices.







[^0]:    Copies of this document are obtainable from the National Technical Information Service (NTIS), Springfield, Virginia 22151.

[^1]:    2/ Silk gauge No. $2: 00,0,2,5,10,12,15,18$, and 20. Mouth opening diameters: $5^{\prime \prime}, 12^{\prime \prime}, 30^{\prime \prime}$, and $40^{\prime \prime}$.

    $$
    \text { I/ Mouth opening diameters: } 5^{\prime \prime}, 12^{\prime \prime}, 30^{\prime \prime} \text {, and 40". }
    $$

    

